{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 00_Showcase ecDHFR: a FEATHER walkthrough" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The tutorial dataset can be downloaded from [this link](https://figshare.com/ndownloader/files/48153751)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## import" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from pigeon_feather.data import *\n", "from pigeon_feather.plot import *\n", "from pigeon_feather.hxio import *\n", "from pigeon_feather.spectra import *\n", "\n", "\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# make folders for results\n", "\n", "import datetime\n", "import os\n", "\n", "out_path = \"./data/bayesian_hdx_input_20240722\"\n", "\n", "today_date = datetime.date.today().strftime(\"%Y%m%d\")\n", "# today_date = '20240722'\n", "results_path = os.path.join(out_path, f\"ecDHFR_results_{today_date}\")\n", "\n", "if not os.path.exists(results_path):\n", " os.makedirs(results_path)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## load the data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "metadata": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "./data/ecDHFR_tutorial.csv\n", "rangeslist included !\n", "Removed 0 peptides from state APO due to missing raw MS data.\n", "Removed 70 peptides from state APO due to high back exchange.\n", "Removed 2 peptides from state TRI due to missing raw MS data.\n", "Removed 70 peptides from state TRI due to high back exchange.\n", "Done loading raw MS data.\n" ] } ], "source": [ "tables = ['./data/ecDHFR_tutorial.csv']\n", "\n", "ranges = ['./data/rangeslist.csv']\n", "\n", "\n", "raw_spectra_paths = [\n", " f\"./data/SpecExport/\",\n", "]\n", "\n", "protein_sequence = \"MTGHHHHHHENLYFQSISLIAALAVDRVIGMENAMPWNLPADLAWFKRNTLDKPVIMGRHTWESIGRPLPGRKNIILSSQPGTDDRVTWVKSVDEAIAACGDVPEIMVIGGGRVYEQFLPKAQKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFHDADAQNSHSYCFEILERR\"\n", "\n", "# load the data\n", "hdxms_data_list = []\n", "for i in range(len(tables)):\n", " # for i in [4]:\n", " print(tables[i])\n", "\n", " \n", " # read the data and clean it\n", " cleaned = read_hdx_tables([tables[i]], [ranges[i]], exclude=False, states_subset=['APO','TRI'])\n", " \n", " # convert the cleaned data to hdxms data object\n", " hdxms_data = load_dataframe_to_hdxmsdata(\n", " cleaned,\n", " n_fastamides=2,\n", " protein_sequence=protein_sequence,\n", " fulld_approx=False,\n", " saturation=0.9,\n", " )\n", "\n", " # load the raw ms data to the hdxms data object\n", " load_raw_ms_to_hdxms_data(\n", " hdxms_data,\n", " raw_spectra_paths[i],\n", " )\n", "\n", " hdxms_data_list.append(hdxms_data)\n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hdxms_data_list" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# save the raw data as a pickle file\n", "import pickle\n", "\n", "today = datetime.date.today().strftime(\"%Y%m%d\")\n", "today = \"20240722\"\n", "\n", "# with open(f\"./data/hdxms_data_raw_{today}.pkl\", \"wb\") as f:\n", "# pickle.dump(hdxms_data_list, f)\n", "\n", "with open(f\"./data/hdxms_data_raw_{today}.pkl\", \"rb\") as f:\n", " hdxms_data_list = pickle.load(f)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "============================================================\n", " HDX-MS Data Statistics\n", "============================================================\n", "States names: ['APO', 'TRI']\n", "Time course (s): [46.0, 373.5, 572.5, 2011.0, 7772.0, 30811.5, 43292.0]\n", "Number of time points: 7\n", "Protein sequence length: 174\n", "Average coverage: 0.93\n", "Number of unique peptides: 186\n", "Average peptide length: 9.4\n", "Redundancy (based on average coverage): 10.0\n", "Average peptide length to redundancy ratio: 0.9\n", "Backexchange average, IQR: 0.19, 0.15\n", "============================================================\n" ] } ], "source": [ "from pigeon_feather.hxio import get_all_statics_info\n", "\n", "get_all_statics_info(hdxms_data_list)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## back exchange correction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "back exchange correction for peptides with experimental full deuteration data based its closest match in the database" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "metadata": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of peptides with experimental max_d: 358\n", "Number of peptides with no experimental max_d: 12\n" ] } ], "source": [ "tools.backexchange_correction(hdxms_data_list)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "186" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# grab all the peptides\n", "\n", "all_peps = [\n", " pep\n", " for data in hdxms_data_list[:]\n", " for state in data.states\n", " for pep in state.peptides\n", "]\n", "\n", "len(set([pep.identifier for pep in all_peps]))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([18., 16., 10., 20., 30., 20., 42., 20., 24., 40., 38., 28., 20.,\n", " 14., 8., 6., 4., 2., 2., 8.]),\n", " array([0.60127572, 0.62628601, 0.6512963 , 0.67630658, 0.70131687,\n", " 0.72632716, 0.75133745, 0.77634774, 0.80135802, 0.82636831,\n", " 0.8513786 , 0.87638889, 0.90139918, 0.92640947, 0.95141975,\n", " 0.97643004, 1.00144033, 1.02645062, 1.05146091, 1.07647119,\n", " 1.10148148]),\n", " )" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG9CAYAAAAbVwIoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx8ElEQVR4nO3daXwUVb7/8W9nhWQSIBAgLBoWV4IRRAUErmicGRMJiHjd2GS4XkQct8wF5KrgOBIH0dFRGdwFGXVYFRhEDaCgwEhkEQwM0YRFsgCBJBiIWer/wD+5VFcTuiudpLvzeb9eeXBO6pz6NZxKvqmurnIYhmEIAACgiQtq7AIAAAB8AaEIAABAhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJUkhjF+AvqqurdejQIUVFRcnhcDR2OQAAwA2GYai0tFQdOnRQUFDt54IIRW46dOiQOnfu3NhlAAAAGw4cOKBOnTrVug2hyE1RUVGSfvlHjY6ObuRqAACAO0pKStS5c+ea3+O1IRS56fRbZtHR0YQiAAD8jDuXvnChNQAAgAhFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkghFAAAAkqSQhtzZiy++qAceeKCm/cQTT2j69Om258vIyNCiRYu0ceNGHTx4UMXFxWrWrJk6d+6sK664QsOGDdPQoUMVEtKgLxPwqvgpK+tt7tz0lHqbGwD8TYOlhaysLE2ZMsUrc2VmZmr8+PHatm2b5XsnTpxQVlaWsrKy9O6776pLly566aWXlJyc7JV9AwCAwNQgb59VVFRo5MiROnnyZJ3nWrBggfr27esyELmSk5OjlJQUzZgxo877BgAAgatBzhQ98cQT+uabb+o8z5IlSzR69GhVV1eb+sPCwnT55Zerbdu2ys/P144dO/Tzzz+btpk+fboiIyOVlpZW5zoAAEDgqfczRRs2bNAzzzxT53lycnJ09913mwJRcHCwpk2bpry8PG3evFnLly/X119/rYMHD2ry5MkKCjK/vKlTp2rLli11rgUAAASeeg1FpaWlLs/s2JGWlqaSkpKadlBQkBYuXKinnnpKMTExpm1jY2OVnp6upUuXmi6yrqys1OTJk+tcCwAACDz1Gop+//vfKycnp87zbN26VUuWLDH1TZs2TTfffHOt41JTU/Xcc8+Z+tasWaM1a9bUuSYAABBY6i0ULV26VG+//XZN+7LLLlOHDh1szTVnzhxTu1WrVm5/km3SpElKTEw09b3yyiu26gAAAIGrXkJRfn6+7rnnnpp2WFiY5s+fr9DQUI/nqqqq0sKFC019d911lyIiItwa73A4NGHCBFPfqlWrVFZW5nEtAAAgcNVLKBo3bpyOHDlS037yySd12WWX2ZrrX//6l44fP27qGzJkiEdzOG9fVlamVatW2aoHAAAEJq+HoldeecUUOK655hr94Q9/sD3fhg0bTO2goCD169fPozk6duyo8847z9S3bt062zUBAIDA49VQtGfPHlMA+tWvfqV58+ZZPhrviV27dpnaXbt2VVRUlMfz9OzZ09TOzMy0XRMAAAg8XgtFlZWVGjlypOlandmzZ6tr1651mjcrK8vUvvDCC23N0717d1M7Ozvbdk0AACDweC0UPfnkk6YbIyYnJ5sutrbr0KFDpnbHjh1tzRMXF2dqHz58mIutAQBADa+Eok2bNunpp5+uabdu3VpvvPGGN6ZWYWGhqd2uXTtb88TGxlr6jh49amsuAAAQeOocin766SeNHDlSVVVVNX1z5sxR+/bt6zq1SktLLc8wi46OtjWXq+uQjh07ZmsuAAAQeOr8QNgHH3xQ33//fU37rrvu0q233lrXaSVJ5eXllj5370/kzrhTp07Vuu8z93/mI0YAAEDgqVMo+uijj/T666/XtDt16qSXXnqpzkWd5ioUnfksM08EBwdb+ioqKs66/cyZMzVjxgxb+wJQf+KnrKyXeXPTU+plXgD+w/bbZ4WFhRo/fnxN2+Fw6K233lLLli29UZckmd6SO81VuHGHq3G1Pah26tSpKi4urvk6cOCArf0CAAD/YPtM0fjx43X48OGa9n333aekpCSvFHWaq8eCVFZW2prL1Vmh8PDws24fHh5e6/cBAEBgsXWm6NVXX9Xy5ctr2hdddJH+/Oc/e62o01yFEucLr93laSgCAABNi8ehKDs7Ww8//HBNOyQkRPPmzVPz5s29Wpj0yyfNHA6Hqe/EiRO25iotLbX0RUZG2poLAAAEHo9CUVVVlUaOHKmffvqppu/RRx/VVVdd5fXCpF8Cl/NH8J0fDusuV+Ps3vMIAAAEHo+uKVq8eLE2b95s6tu+fbtGjBjh1vgzr0GSpH/84x/auXOnqW/SpEm69tpra9odOnRQcXFxTbugoMCTks86rlmzZraeoQYAAAKTR6HI1WMxPvzwQ9s7z8rKsjzb7KabbjK1u3XrZtpm//79tva1b98+y7wAAACnee3ZZ/WlR48epvaePXtszeM8znleAADQtPl8KLryyitN7by8PMtDYs+loqJC27dvN/X17t27zrUBAIDA4VEoGjt2rAzDsP11/vnnm+Z74oknLNuMHTvWtM2gQYMUFGQuMyMjw6MXuX79esvdsb19TyUAAODffP5MUWxsrOVs0fvvv+/RHO+9956pHRcXp169etW5NgAAEDh8PhRJ0ujRo03tVatWKTMz062xOTk5evfdd01948aNs5x9AgAATZtfJINRo0YpJiampm0Yhm6//XYdOXKk1nFlZWW69dZbderUqZq+5s2ba8KECfVWKwAA8E9+EYqioqI0bdo0U192draSkpKUnZ3tckxeXp5uvPFGyxmlhx56SJ06daq3WgEAgH+y/UDYhvbAAw9o6dKl2rBhQ03f9u3blZiYqFGjRiklJUUdOnRQYWGhMjIy9Oabb+rYsWOmOXr16qXHH3+8oUsHAAB+wG9CUXBwsD788EMlJSVp69atNf1lZWWaO3eu5s6dW+v4+Ph4LV26lIfAAgAAl/wmFElSTEyMPvvsM40ZM0YrVqxwe1z//v31wQcf8LYZgLOKn7Ky3ubOTU+pt7kBeI9fXFN0ppiYGC1fvlzLli3TwIEDa/0UWUJCgl577TWtX7+eQAQAAGrVoGeKcnNzvTbX0KFDNXToUBUWFmrTpk3Ky8vT0aNHFRERobi4OF111VXq0qWL1/YHAAACm1+9feZK27ZtlZqa2thlAAAAP+d3b58BAADUB0IRAACACEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSpJDGLgBoSPFTVtbLvLnpKfUyLwCg4XCmCAAAQIQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASVJIYxcAAIEufsrKepk3Nz2lXuYFmirOFAEAAIhQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIEkKaewCAASe+CkrG7sEAPAYZ4oAAABEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJAkhXhzsvLyci1btkyff/65Nm/erPz8fBUVFSkoKEitW7dWx44dNWDAACUlJenXv/61HA5HnfaXkZGhRYsWaePGjTp48KCKi4vVrFkzde7cWVdccYWGDRumoUOHKiTEqy8TAAAEIK+khcrKSs2ePVvPPfecCgsLXW5TVlamAwcOaNOmTXr22Wd16aWX6sknn9Qtt9zi8f4yMzM1fvx4bdu2zfK9EydOKCsrS1lZWXr33XfVpUsXvfTSS0pOTvZ4PwAAoOmo89tnP/74owYOHKgpU6acNRC58t1332nEiBG699579fPPP7s9bsGCBerbt6/LQORKTk6OUlJSNGPGDLf3AQAAmp46nSkqKirSDTfcoKysLMv3QkNDlZiYqPbt2+vnn39Wbm6u/v3vf1u2+9vf/qbS0lK9++6759zfkiVLNHr0aFVXV5v6w8LCdPnll6tt27bKz8/Xjh07LEFr+vTpioyMVFpamoevEgAANAV1OlM0evRoSyBq166d5syZo2PHjunrr7/W8uXLtXr1au3Zs0e5ubmaOHGi5VqiBQsW6Nlnn611Xzk5Obr77rtNgSg4OFjTpk1TXl6eNm/erOXLl+vrr7/WwYMHNXnyZAUFmV/e1KlTtWXLlrq8ZAAAEKBsh6KPP/5YK1euNPUlJCQoMzNTEyZMUGRkpGXM+eefr5dfflnLli1TaGio6XtPPvlkrW+/paWlqaSk5P8KDwrSwoUL9dRTTykmJsa0bWxsrNLT07V06VLTRdaVlZWaPHmyR68TAAA0DbZD0ezZs03tqKgoffTRR+rYseM5x6amplrGl5aWau7cuS6337p1q5YsWWLqmzZtmm6++eZz7ue5554z9a1Zs0Zr1qw5Z40AAKBpsRWKDh8+rLVr15r6Jk6cqC5durg9x8SJE9W1a1dT3/Lly11uO2fOHFO7VatWmjJlilv7mTRpkhITE019r7zyitt1AgCApsFWKPriiy9UVVVl6rvttts8miM4OFipqammvm3btskwDFNfVVWVFi5caOq76667FBER4dZ+HA6HJkyYYOpbtWqVysrKPKoXAAAENluh6LvvvjO1w8LCLGdj3OF8pqiiokJFRUWmvn/96186fvy4qW/IkCEe7cd5+7KyMq1atcqjOQAAQGCz9ZH83r176/7771deXp4OHTqkqqoqyye93HHq1KlzbrNhwwZTOygoSP369fNoPx07dtR5552n/fv31/StW7fO1o0jAQBAYLIVilJSUpSSklLnne/atcvUDg8PV+vWrWvdpmvXroqKivJ4Xz179jSFoszMTI/nAAAAgavRHghbXl5u+Uh/jx49LNs53wfpwgsvtLW/7t27m9rZ2dm25gEAAIGp0ULRW2+9pSNHjpj6nC+8lqRDhw6Z2u585N+VuLg4U/vw4cNcbA0AAGo0Sig6fPiwHnvsMXMhQUG64447LNs639CxXbt2tvYZGxtr6Tt69KituQAAQOBp8FBUXV2tcePGWc4S3XnnnZa3xkpLSy3PMIuOjra1X1fXIR07dszWXAAAIPA0eCiaPHmyVqxYYeqLiYnRn//8Z8u25eXllj5370/kzjh3Pv0GAACaBlufPrPrqaeesjz41eFw6M0337Rc8yO5DkVnPsvME8HBwZa+ioqKs25fXl5u2v+Zz10DAACBp8FC0cyZMy3XEUnSjBkzNHToUJdjnO+aLbkON+5wNa66uvqs28+cOVMzZsywtS/UTfyUlefeyMf4Y82S/9aNX9Tn/19uet1vuwL4m3p/+8wwDKWlpenRRx+1fO++++5zGZROCw0NtfRVVlbaqsPVWaHw8PCzbj916lQVFxfXfB04cMDWfgEAgH+o1zNFFRUVGj9+vObNm2f53r333qu//vWvtY53FVqcL7z2pBZ35j/ze7V9HwAABJZ6C0VFRUUaPny4Pv/8c8v3HnnkEcu1Ra5ER0fL4XCYHhJ74sQJW/WUlpZa+iIjI23NBQAAAk+9vH22d+9e9e3b12UgSk9PdysQSb9cVO38EXznh8O6y9U4u/c8AgAAgcfroWjdunXq27ev9u7da+oPDQ3VO++8o8mTJ3s0X4cOHUztgoICW3U5j2vWrJmtZ6gBAIDA5NVQNG/ePP36179WUVGRqb9ly5ZavXq1Ro8e7fGc3bp1M7XPfKirJ/bt21frvAAAoGnzWiiaPXu2xo4da7mguUuXLvrqq680ePBgW/M6PyR2z549tuZxHufq4bMAAKDp8koomjlzptLS0kwXREtS3759tXnzZl1yySW2577yyitN7by8PMtDYs+loqJC27dvN/X17t3bdk0AACDw1DkU/fWvf3V5D6Jhw4ZpzZo1Lh/E6olBgwYpKMhcZkZGhkdzrF+/3nJ37KSkpDrVBQAAAkudQtGKFSv04IMPWvr/67/+S4sXL1bz5s3rMr2kX55u73y26P333/dojvfee8/UjouLU69evepcGwAACBy2Q9H+/fs1cuRIy6My7r33Xr366quWszt14XyB9qpVq5SZmenW2JycHL377rumvnHjxnm1PgAA4P9sJ4P//u//VnFxsakvJSVFL730Up2LcjZq1CjFxMTUtA3D0O23364jR47UOq6srEy33nqrTp06VdPXvHlzTZgwwes1AgAA/2YrFH388cf6+OOPTX1xcXGaN29evZyBiYqK0rRp00x92dnZSkpKUnZ2tssxeXl5uvHGGy1nlB566CF16tTJ6zUCAAD/5jCcPzLmhsGDB2vdunX1UM4vb3fFx8db+quqqnTttddqw4YNpv6IiAiNGjVKKSkp6tChgwoLC5WRkaE333xTx44dM23bq1cvbdy40dYzzUpKStSiRQsVFxdb7rIN7+LJ7UDjy01PaewSAK/w5Pe3x88+y8vLq7dAVJvg4GB9+OGHSkpK0tatW2v6y8rKNHfuXM2dO7fW8fHx8Vq6dCkPeQUAAC55HIpcPc+socTExOizzz7TmDFjtGLFCrfH9e/fXx988IFPv21WX2dH+GsPAAD3eHwB0MGDB+ujDrfFxMRo+fLlWrZsmQYOHFjrNUwJCQl67bXXtH79ep8ORAAAoPF5fKYoLS1NaWlp9VGLR4YOHaqhQ4eqsLBQmzZtUl5eno4ePaqIiAjFxcXpqquuUpcuXRq7TAAA4Cc8DkW+pm3btkpNTW3sMgAAgJ/jDoYAAAAiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEgiFAEAAEiSQhq7ANSv+Ckr623u3PSUepsbAICGxpkiAAAAEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkSSGNXQAAwPfET1lZL/PmpqfUy7yAN3CmCAAAQIQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASVJIYxcA/xU/ZWVjlwAAgNdwpggAAECEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAElSSGMXAABoOuKnrKy3uXPTU+ptbvyfQP4/5EwRAACACEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSCEUAAACSpJDGLgAAAG+In7KyXubNTU+pl3nhezhTBAAAIEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJEIRAACAJCmksQsAAMCXxU9ZWW9z56an1Nvc8BxnigAAAEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkEQoAgAAkOTnoSgrK0tTp07VwIED1b59e4WHhysiIkJdunRRamqq5syZo+Li4sYuEwAA+AGHYRhGYxfhqYKCAk2aNEmLFi0657ZRUVF6/PHH9fDDDysoyH4GLCkpUYsWLVRcXKzo6Gjb85xN/JSVXp8TAAB/kpue4vU5Pfn97Xdninbs2KHExES3ApEklZaW6g9/+IOGDBmikydP1nN1AADAX/lVKPrhhx80ePBgFRQUWL6XkJCg5ORkXXPNNWrZsqXl+//85z/1n//5n/LDE2MAAKAB+E0oqqys1IgRI1RUVGTqHzZsmPbu3atvv/1WK1eu1IYNG5SXl6fXX39dLVq0MG27YsUKvfDCCw1ZNgAA8BN+E4rmzJmjrVu3mvoeeughLV26VN27dzf1N2vWTL/73e+UmZmpuLg40/f++Mc/cvE1AACw8ItQVF5erj/+8Y+mvkGDBmn27Nm1juvWrZtWrFih0NDQmr6ioqJzjgMAAE2PX4SixYsX6/Dhw6a+9PR0ORyOc47t3bu3JkyYYOqbO3euqqurvVojAADwb34Rit5//31TOyEhQf369XN7/MSJE03twsJCffHFF16pDQAABAafD0UVFRVau3atqW/IkCEezXHxxRdbrjtavHhxnWsDAACBw+dD0bZt23TixAlT34ABAzyep3///qb2unXr6lIWAAAIMD4finbt2mXpS0xM9Hienj17mtrfffcdN3MEAAA1fD4UZWVlmdoRERHq2LGjx/M4v31WXV2tnJycOtUGAAACh8+HokOHDpnadgKRJMv9iiRp3759tuYCAACBx+dDUX5+vqndrl07W/PExsZa+o4cOWJrLgAAEHh8PhQ5P9bD7hPqo6KiLH3Hjh2zNRcAAAg8IY1dwLmUl5eb2hEREbbmcTXu1KlTte73zH2ffjRISUmJrf2fS3V5Wb3MCwCAv6iP37Gn53TngfB+F4pCQuyVHBwcbOmrqKg46/YzZ87UjBkzLP2dO3e2tX8AAFC7Fn+pv7lLS0stD4p35vOhqKqqytR2FW7c4WpcbY/6mDp1qh5++GHTtkVFRWrdurVbjxdxV0lJiTp37qwDBw7YfmsQ8BWsZwQS1nNgMAxDpaWl6tChwzm39flQdObDXCWpsrLS1jyuzgqFh4efdfvw8HDL91u2bGlr3+6Ijo7moEPAYD0jkLCe/d+5zhCd5vMXWjsHk59//tnWPJ6GIgAA0LT4fChyTnfOj/xwV2lpqaUvMjLS1lwAACDw+Hwoat26tal9/PhxW/O4Gmf3nkfeFB4erieeeIKzVggIrGcEEtZz0+Pz1xQ5XxhVUFBgax5X43wlFE2fPr2xywC8gvWMQMJ6bnp8/kxRt27dTO1Dhw7Zutja1SM9unbtarsuAAAQWHw+FPXo0cPUrqys1A8//ODxPHv27DG127ZtqzZt2tSpNgAAEDh8PhT16dPH0rdlyxaP53Ee07t3b9s1AQCAwOPzoahNmzZKSEgw9WVkZHg0R1lZmb766itTX1JSUp1rAwAAgcPnQ5EkpaSkmNrLli2r9bllzpYuXWrZPjk5+ZzjsrKyNHXqVA0cOFDt27dXeHi4IiIi1KVLF6WmpmrOnDk1z0RrLAUFBXrhhReUmpqqbt26KTIyUmFhYWrbtq169+6tSZMm6dNPP23UGuEbfH09n17LN998s7p3765WrVopLCxM7du3V2JioiZMmKDFixfbvoErmo6nn35aDodDDodDY8eObbQ6qqqqtGzZMo0bN049evRQTEyMQkJC1KJFCyUmJuqee+7R6tWr3XomFxqI4Qd27dplSDJ9Pffcc26NraioMHr06GEae80119Q6Jj8/3xgxYoRln66+oqKijFmzZhlVVVXeeKluO378uDFp0iQjNDTUrTp79uxpfPXVVw1aI3yDr6/nEydOGL///e+NZs2auVVjfHy8MX/+/AarD/5l9+7dRmRkZM16GTNmTKPU8cknnxhdu3Z1a00nJiYaGzdubJQ6YeYXocgwDCMpKcm0iJo1a+bWL/kJEyZYFuDixYvPuv327duNdu3aubWQz/xKTk42ysrKvPmSz2rbtm3Geeed53GNwcHBxksvvdQgNcI3+Pp6zs7ONi699FKP65NkjB071qioqKj3GuE/SkpKjJ49e5rWSWOEopkzZ3q8nkNDQ43XX3+9wWuFmd+Eoq+//toICgoyLaKYmBhj1apVLrcvLy83Jk2aZFl4/fv3P+s+vv/+eyMmJsblgk1ISDCSk5ONa665xmjZsqXLbW666Sajurq6vv4JDMMwjK1btxotWrRwuf9u3boZycnJxo033mhccMEFLrdxOBz8ld1E+Pp6LiwsNLp16+Zy361atTIGDx5spKamGldffbURFhbmcrvRo0fX+zEH/3Dy5Enj+uuvt6yRhg5Fzz//vMu1GhkZafTr189ISUkxEhMTLb/PTv98/uCDDxq0Xpj5TSgyDMOYMmWKy0U0ZMgQ4+9//7uxefNmY82aNcasWbOM7t27W7aNjo429u7d63LuiooKo1evXpYxw4YNs4w5efKk8frrr7sMJ88//3y9vf6ioiKjU6dOln3+5je/MbZv327ZfufOncaNN97o8t/hxx9/rLc60fj8YT3ffPPNlv117tzZWLRokeXtu+LiYuPJJ590+Xbxq6++Wm81wj+UlpYa1113ncsw0pChaOPGjUZISIhp/82bNzeee+4548SJE6Ztc3NzjXHjxlnqjYqKMvbt29dgNcPMr0JRVVWVMXbsWI9PS0q/vN328ccfn3XuF1980TLmoYceqrWe7OxsIy4uzjQmJibGOH78uLdfumEYhjFq1ChLjf/7v/9b61/K1dXVxoMPPmgZd99999VLjfANvr6ev/zyS0t9PXr0MA4fPlzruIyMDCM8PNw0LjY21vjpp5+8XiP8w86dO42LL774rD/7GyoUVVdXG3369LEEonNdK/Tyyy9bah43blyD1AwrvwpFhvFLMJo8ebIljdf21alTJ+Pzzz8/65ynTp0yYmNjTWMGDRrk1mn5zMxMy1+vjz32mDdfsmEYv7xt5nA4TPu5//773RpbVVVlXH755aaxLVu2NE6ePOn1OtH4/GE9T5w40bSPkJAQY9euXW6NTU9PtxzjixYt8nqN8H3vvPOOERERUevP/4YKRUuWLLHs+4033nBr7MMPP2waFxwcbOzZs6eeK4YrfheKTtuxY4cxYsSIWg+Idu3aGY899tg5/9JdsGCBZawnn9S6//77TWPbtm3r9U/vOJ8luuSSS4xTp065PX7+/PmW17hhwwav1gjf4A/r+aKLLjLt47e//a3bY0tKSizXGE2cONGr9cG37d692xg6dKhbfxQ3VCi64YYbTPu9+OKL3b7erayszPKBiEceeaSeK4YrfhuKTisrKzM++eQT48033zRmzpxpzJo1y3jrrbeMbdu2uf2DfMiQIabFmJCQ4FENWVlZlgNx7dq1Nl6Na8XFxZaPK9f2CbqzzREWFmbExMQYF1xwgdG3b19j+fLlXqsRvsPX17NhGKaPTEsy/ud//sej8QkJCabxqampXq0PvqmgoMCYOHHiWd8puP/++40BAwY0eCg6fPiw5Uz+s88+69EckydPNo2Pj4+vp2pRmxD5uebNm+uGG26wPb6iokJr16419Q0ZMsSjOS6++GJ1795d2dnZNX2LFy/Wtddea7uuM61evdp088mOHTvq5ptv9miO6OhonTp1Sg6Hwys1wTf5w3qWpJMnT5rant6QMTQ01NQuLy+vc03wfU8//bReeeUVS39UVJReeOEF3X333V5dp+769NNPLTdg9PS4GzJkiJ555pmadm5urjIzM3XFFVd4pUa4xy/uaF2ftm3bphMnTpj6BgwY4PE8/fv3N7XXrVtXl7JMnO9IPXz4cFvhhkAU+PxhPUtSbGysqb1161a3x5aXl2vv3r2mvs6dO3ulLvif5ORk7dq1S3fffXej1bBhwwZTOzY2VhdeeKFHc/Tp00dhYWGmPm8fdzi3Jh+Kdu3aZelLTEz0eJ6ePXua2t99953lr2G7Nm/ebGr369fPK/Mi8PjDepakK6+80tT+4osvXNbuyvz58y3B7/rrr/dabfAPCQkJWr58uVauXNnoodh57do55sLDw3XBBReY+jIzM+tUFzzn92+f1VVWVpapHRERoY4dO3o8T/fu3U3t6upq5eTk6NJLL61TfRUVFW4dcJmZmVq3bp3+/e9/q6SkRK1bt1anTp10/fXXq0+fPpwlaiJ8fT2fNmrUKK1YsaKmXVVVpTvvvFPr1q1Tq1atzjpu27ZteuSRR0x95513nsdvJ8N/9enTRw8++KDuuOMOBQX5xt/1zsedp2eJTuvevbvp5/2Zb2GjYTT5UHTo0CFT284vEEmKi4uz9O3bt6/Ov0Ryc3NVVVVl6jv9V5FhGJo3b57S09O1e/fus84RHx+vP/3pT7rzzjvrVAt8n6+v59NuvfVWvfDCC/rqq69q+nbs2KE+ffro+eef10033WT6hXfq1Cm99tprmjp1qn766aea/pCQEL3xxhsKDw/3Sl3wbY8//rhiYmIauwyTyspKHT582NTnreNu3759tuuCPU0+FOXn55va7dq1szWP8zUSknTkyBFbc50pNzfX1I6IiFBUVJQKCgp022236fPPP3drjrvuukvvvPOOFi5cqOjo6DrXBd/k6+v5NIfDoUWLFum6664zBfoffvhBQ4cOVUxMjBITExUdHa0jR47om2++sbx9Fx0drfnz5yspKclrdcG3+VogkqSCggLLRdbeOu6OHj0qwzA409+AfOPcYyMqKioyte0GhqioKEvfsWPHbM11Jue/QCIiInTo0CENGDDArUB0pk8++USDBg3S0aNH61wXfJOvr+czxcXFafPmzRo/frzlbZCioiKtXbtWH374ob788ktTIGrevLnuuece7d69W6mpqV6tCfCU8zEnee+4q6qqUmlpqa25YE+TD0XOH+WNiIiwNY+rcWd+jN4u5wMuODhYw4cPN73XfPXVV+vtt9/Wvn37dOrUKRUWFurTTz/VmDFjLL9stm/frrvuukvV1dV1rg2+x9fXs7Po6Gi99tprWrBggX71q1+5NSYyMlKtWrXir2f4BFe3g/D14w5nRyhyWtAhIfbeUQwODrb0VVRU2JrrTGVlZaZ2QUFBzafRgoKC9Je//EUbN27UmDFjdN555yk8PFyxsbFKSkrS22+/rfXr16tNmzamOVavXq0XX3yxzrXB9/j6enaWkZGh3r1764477rB8ouxsjhw5omeeeUYXXXSR5s6d6/WaAE+4CkW+ftzh7Jp8KHK+iNnVonSHq3HeOBvz888/n/V7r776qh544IFa/2Lu37+/PvvsMzVr1szUn56e7tWPWMM3+Pp6PtP06dN1ww03mO5RFBERoYcffljr16/XkSNHVF5eroMHD2rx4sUaPny4aXxJSYkmTJigtLQ0r9YFeML5mJN8+7hD7Zp8KHK+M66nd9Y9zVWa98YnYs52QNx666363e9+59YciYmJevzxx019BQUFeu+99+pcH3yLr6/n02bPnq0ZM2aYLlDt06eP9uzZo9mzZ2vAgAFq3bq1wsLC1LFjRw0fPlyLFy/W559/rrZt21rmmjNnjtdqAzzhfMxJvnvc4dyafChyXnC1nZmpTX0tZlcHnCRLyDmXiRMnWq7Z+OSTT2zXBd/k6+tZkvbs2aNHH33U1HfZZZdp3bp16tSpU61jBw0apPXr16tly5am/smTJysvL88r9QGecHVc+OJxB/c0+VDUokULU9vd6xqcufqEQGRkpK25ztS8eXNL3wUXXKCEhASP5mnRooUGDhxo6vviiy/qVBt8j6+vZ0l65plnTL80goOD9f7777s9/4UXXmg5M1RaWqqXX37ZK/UBnnA+5iTvHnd2L9qGPU0+FLVu3drUPn78uK15XI2ze6+KMznXJ1kfkeCuPn36mNr5+fm2T/PCN/n6eq6srNTChQtNfbfccosuueQSj+a57bbbLDeS/OCDD+pcH+ApVz+jvXXcxcTEnPXdAtSPJh+KOnToYGoXFBTYmsfVOG/8EnE1h6sb67nDeZxhGNyzKMD4+nreuXOn5a9oT58mLv1y88ehQ4ea+rKzs1nPaHAtW7a0nOX01nHnjWMOnmnyoahbt26m9qFDh2ydPXF1O/auXbvarqu2Oex+RNP5E2iS64+Twn/5+np2Ne9FF11kay5XbyEfPHjQ1lxAXXTp0sXU3r9/v615nI8Pbxxz8EyTD0U9evQwtSsrK/XDDz94PM+ePXtM7bZt21ruD2RHfHy8Jcz8+OOPtuZydUdiV++Hw3/5+np2da2F3WsmXD049sznogENxfm4cz5+3OU8znle1L8mH4qcr7ORpC1btng8j/OY3r17267pTCEhIZa5znyKsidycnJM7datWxOKAoyvr2dXQcabId8bwQ3wlPN1ntu2bfP4DO2BAwdUWFho6vPWcQf3NflQ1KZNG8tp+IyMDI/mKCsrMz3tW5JXH1I5ePBgUzs7O1s7duzweB7nGnv16lWnuuB7fH09t2/f3tL3zTff2Jrr22+/NbUdDofL+YH6du2115raJ0+e1MaNGz2a49NPPzW1HQ6HrrvuurqWBg81+VAkSSkpKab2smXLPHrezNKlSy3bJycne6U2SRo2bJilb/78+R7N8e2331qC1I033liXsuCjfHk99+zZ0/KwzAULFng8j2EYWrZsmamvV69eth/ECdRF7969FRcXZ+p7//33PZrD+Wa6V111le0P1cA+QpGk0aNHm9pFRUVu3yG3srJSM2fONPVdc801Hn/EuDZ9+vRRYmKiqW/OnDkeXcw3ffp0UzskJES33367N8qDj/Hl9RwaGqrf/va3pr6dO3fqH//4h0fzLFiwQLt37zb1paam1rk+wA6Hw6GRI0ea+t5++223L/zfuHGjPvvsM1Pf+PHjvVYfPGDAMAzDSEpKMiTVfDVr1sz46quvzjluwoQJpnGSjMWLF3u9vg8++MCyn6uvvto4ceLEOcf+7W9/s4wdNWqU12uE7/Dl9bx582bLPmJiYozs7Gy3xn/77bdGVFSUaXx0dLRx+PBhr9YJ//Qf//EfprUxZsyYBtlvTk6OERoaatp33759jZMnT9Y6Lj8/34iPjzeNa9eunVs/2+F9hKL/7+uvvzaCgoIsP6hXrVrlcvvy8nJj0qRJlh/u/fv3P+e+nA9aScbatWvPOe66666zjLvyyiuNvXv3uty+qqrKmDVrluFwOExjIiIijP37959zf/Bfvr6e77jjDsuYli1bGkuWLKl13JIlS4wWLVpYxj7zzDPnrBNNgzdCkd2f0ffff79l3ODBg438/HyX2+/evdtISEiwjHn11Vc9rhneQSg6w5QpUyyL0+FwGEOGDDH+/ve/G5s3bzbWrFljzJo1y+jevbtl2+jo6LMGlDPZPeDy8vKMLl26WMaGhYUZo0ePNhYuXGhkZmYaX3zxhfHiiy8al19+uWVbScY777zjhX8t+DpfXs8lJSVGz549Xa7PhIQEY9asWcaKFSuMzMxMIyMjw5g9e7bRt29fl9sPHz7cqK6u9tK/GvxdY4ai0tJSl8dSTEyMkZaWZvzzn/80tmzZYnz00UfGPffcY0RERFi2TU5OZj03IkLRGaqqqoyxY8e6/MF7rq9mzZoZH3/8sVv7sXvAGYZhHDx40Lj44ott1SjJ+NOf/lSHfyH4E19fz/v37z9rMHL3KyUlxfjpp5/q+C+FQNKYocgwfnkb7fzzz7e1nnv37m0UFRV5XC+8hwutzxAUFKQ33nhDkydPVkhIiNvjOnXqpNWrV+s3v/lNPVb3i44dO2r9+vWWi/rOJTo6WgsWLLA8nRyBy9fXc+fOnbVp0yaNHTtWDofDo7Hh4eGaPn26li9fzgMz4VPi4+O1bt069evXz6NxqampWrNmjct7eaHhEIqcBAUFKT09Xd98841GjBhR6w/cdu3a6bHHHtPOnTs1aNCgBquxTZs2mj9/vjZs2KBbbrml1qeLt23bVmlpacrOztadd97ZYDXCN/j6eo6IiNBbb72lHTt2aOTIkef8hdChQwc98MAD+v777/XEE094HKaAhhAfH68vv/xSb775pq644opat+3Xr58WLlyoDz/8kJvp+gCHYRhGYxfhy06ePKkNGzbo4MGDKigoUEhIiNq0aaNevXqpZ8+eCgpq/Fx58uRJbdq0SQcPHlR+fr6qqqoUGxurxMRE9erVS8HBwY1dInyEr6/n6upqbdu2Tbt379aRI0dUWlqqli1bKjY2Vj179vTqrS6AhrJ//35t2bJF+fn5OnbsmKKiotSpUyf169fPcn8jNC5CEQAAgHj7DAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQBKhCAAAQJL0/wBOIB3+6FytZwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "max_d = [pep.max_d / pep.theo_max_d for pep in all_peps]\n", "plt.hist(max_d, bins=20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## plot uptake plots" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "# option 1\n", "from matplotlib.ticker import MultipleLocator, FormatStrFormatter\n", "import matplotlib.ticker as ticker\n", "import matplotlib.lines as mlines\n", "from pigeon_feather.analysis import get_index_offset\n", "from matplotlib.ticker import LogLocator\n", "\n", "\n", "font = {\"family\": \"Arial\", \"weight\": \"normal\", \"size\": 36}\n", "axes = {\"titlesize\": 36, \"titleweight\": \"bold\", \"labelsize\": 36, \"linewidth\": 5}\n", "plt.rc(\"font\", **font)\n", "plt.rc(\"axes\", **axes)\n", "plt.rc(\"lines\", lw=5)\n", "\n", "colors = [\"k\", \"red\", \"blue\", \"purple\", \"gray\", \"orange\", \"yellow\", \"green\", \"brown\"]\n", "\n", "\n", "all_peps = [\n", " peptide\n", " for hdxms_data in hdxms_data_list\n", " for state in hdxms_data.states\n", " for peptide in state.peptides\n", " if peptide.note is None and state.state_name != \"RAT\"\n", "]\n", "all_idfs = [pep for pep in all_peps if pep.unique_num_timepoints > 5]\n", "all_idfs = list(set([peptide.identifier for peptide in all_peps]))[:]\n", "all_idfs.sort(key=lambda x: int(re.search(r\"(-?\\d+)\", x).group()))\n", "\n", "\n", "\n", "def idf_to_pep(idf):\n", " return [pep for pep in all_peps if pep.identifier == idf][0]\n", "\n", "# num_subplots_per_figure = 100\n", "num_subplots_per_figure = 250\n", "num_figures = math.ceil(len(all_idfs) / num_subplots_per_figure)\n", "\n", "\n", "all_idfs_subset = all_idfs[:]\n", "\n", "for fig_index in range(num_figures):\n", " # Select the subset of errors for the current figure\n", " selected_idf = all_idfs_subset[\n", " fig_index * num_subplots_per_figure : (fig_index + 1) * num_subplots_per_figure\n", " ]\n", " num_col = math.ceil(len(selected_idf) / 5)\n", "\n", " fig, axs = plt.subplots(\n", " num_col, 5, figsize=(9 * 5, 8 * num_col)\n", " ) # Adjust subplot size as needed\n", "\n", " for i, idf in enumerate(selected_idf):\n", " ax = axs[i // 5, i % 5]\n", "\n", "\n", " pep = idf_to_pep(idf)\n", " ax.axhline(y=pep.max_d, color='lightgray', linestyle='--', linewidth=5)\n", "\n", "\n", " uptake = UptakePlot(\n", " hdxms_data_list,\n", " idf,\n", " states_subset=[\"APO\", \"TRI\"],\n", " if_plot_fit=False,\n", " figure=fig,\n", " ax=ax,\n", " )\n", "\n", " ax.set_xlim(1e1, 1e5)\n", " ax.xaxis.set_major_locator(LogLocator(base=10.0, numticks=5))\n", "\n", "\n", " y_max = pep.theo_max_d/hdxms_data_list[0].saturation\n", " ax.set_ylim(-0.5, y_max + 0.5)\n", "\n", "\n", " #Custom legend\n", " handles, labels = ax.get_legend_handles_labels()\n", " new_labels = [label for label in labels if label in [\"APO\", \"TRI\"]]\n", " new_handles = [\n", " handle\n", " for handle, label in zip(handles, labels)\n", " if label in [\"APO\", \"TRI\"] \n", " ]\n", " ax.legend(new_handles, new_labels, title=\"state\", title_fontsize=\"small\",loc='best')\n", "\n", "\n", " # Layout adjustment and save\n", " fig.tight_layout()\n", " fig.savefig(f\"{results_path}/DHFR_exp_uptake_{fig_index}.pdf\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## peptide subtraction" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "metadata": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "117 new peptides added to the APO state.\n", "126 new peptides added to the TRI state.\n" ] } ], "source": [ "# [state.add_all_subtract() for data in hdxms_data_list for state in data.states]\n", "# add_new_peptides_by_subtract()\n", "for i in range(1):\n", " [\n", " state.add_new_peptides_by_subtract()\n", " for data in hdxms_data_list[:]\n", " for state in data.states\n", " ]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "metadata": {} }, "outputs": [ { "data": { "text/plain": [ "[117, 126]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[state.num_subtracted_added for data in hdxms_data_list for state in data.states]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "save the data as a pickle file for later use, and write to files used for bayesian sampling" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "metadata": {} }, "outputs": [], "source": [ "import os\n", "\n", "out_path = f\"./data/bayesian_hdx_input_{today}\"\n", "if not os.path.exists(out_path):\n", " os.makedirs(out_path)\n", "\n", "\n", "import pickle\n", "\n", "with open(f\"{out_path}/hdxms_data_list.pkl\", \"wb\") as f:\n", " pickle.dump(hdxms_data_list, f)\n", "\n", "# with open(f\"{out_path}/hdxms_data_list.pkl\", \"rb\") as f:\n", "# hdxms_data_list = pickle.load(f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## inputs for MCMC sampling" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "metadata": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Isotope files saved to ./data/bayesian_hdx_input_20240722/spectra_dhfr_tutorial_dataset\n", "Reminder: sequence contains fastamides !!!\n", "Reminder: sequence contains fastamides !!!\n", "Data saved to ./data/bayesian_hdx_input_20240722\n", "dhfr_tutorial_dataset\n" ] } ], "source": [ "exp_names = [\n", " \"dhfr_tutorial_dataset\",\n", "]\n", "\n", "for i in range(len(hdxms_data_list)):\n", " # exp_name = raw_spectra_paths[i].split('/')[-2].split('SpecExport_')[-1]\n", " exp_name = exp_names[i]\n", " export_iso_files(\n", " hdxms_data_list[i], outdir=f\"{out_path}/spectra_{exp_name}\", overwrite=True\n", " )\n", " df = revert_hdxmsdata_to_dataframe(hdxms_data_list[i])\n", " convert_dataframe_to_bayesianhdx_format(\n", " df, protein_name=exp_name, OUTPATH=f\"{out_path}\"\n", " )\n", "\n", " print(exp_name)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "metadata": {} }, "outputs": [], "source": [ "# write ready to run script for each state\n", "\n", "protein_sequence = \"MTGHHHHHHENLYFQSISLIAALAVDRVIGMENAMPWNLPADLAWFKRNTLDKPVIMGRHTWESIGRPLPGRKNIILSSQPGTDDRVTWVKSVDEAIAACGDVPEIMVIGGGRVYEQFLPKAQKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFHDADAQNSHSYCFEILERR\"\n", "\n", "state_names = list(\n", " set([state.state_name for data in hdxms_data_list for state in data.states])\n", ")\n", "for protein_state in state_names:\n", " script = tools.generate_bayesian_hdx_script(\n", " exp_names,\n", " protein_sequence,\n", " protein_state,\n", " base_directory=\".\",\n", " making_chunks=True,\n", " pH=7.0,\n", " temperature=293.0,\n", " saturation=0.9,\n", " rerun_num=3,\n", " extreme_value_prior=False,\n", " structural_prior=False,\n", " )\n", "\n", " with open(f\"{out_path}/run_bayesian_hdx_{protein_state}_chunks.py\", \"w\") as f:\n", " f.write(script)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "two priors" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# uptake prior\n", "#tools.generate_extreme_value_prior(hdxms_data_list, out_path)\n", "\n", "\n", "# structural prior\n", "\n", "# solvated_pdbs = [\n", "# \"./data/5DFR_APO_relaxed_best_solvated.pdb\",\n", "# \"./data/6XG5_TRI_relaxed_best_solvated.pdb\",\n", "# \"./data/1RG7_MTX_relaxed_best_solvated.pdb\",\n", "# ]\n", "\n", "# for i, state_name in enumerate([\"APO\", \"TRI\", \"MTX\"]):\n", "\n", "\n", "# tools.generate_structural_prior(\n", "# protein_sequence, solvated_pdbs[i], out_path, state_name\n", "# )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## run the sampling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can run the script in the terminal with the following command:\n", "\n", "```sh\n", "cd ./data/bayesian_hdx_input_20240722\n", "python run_bayesian_hdx_APO_chunks.py\n", "```\n", "\n", "The simulations usually take several hours, but the duration varies based on the size of the dataset (number of peptides, time points, and replicates).\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analysis" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "metadata": {} }, "outputs": [], "source": [ "import pickle\n", "\n", "class CustomUnpickler(pickle.Unpickler):\n", " def find_class(self, module, name):\n", " if name == \"ProteinState\":\n", " from pigeon_feather.data import ProteinState\n", "\n", " return ProteinState\n", " if name == \"HDXMSData\":\n", " from pigeon_feather.data import HDXMSData\n", "\n", " return HDXMSData\n", " if name == \"Peptide\":\n", " from pigeon_feather.data import Peptide\n", "\n", " return Peptide\n", " if name == \"Timepoint\":\n", " from pigeon_feather.data import Timepoint\n", "\n", " return Timepoint\n", " return super().find_class(module, name)\n", "\n", "\n", "# read pcikle\n", "with open(f\"{out_path}/hdxms_data_list.pkl\", \"rb\") as f:\n", " hdxms_data_list = CustomUnpickler(f).load()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hdxms_data_list" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "for data in hdxms_data_list:\n", " for state in data.states:\n", " state.peptides = [pep for pep in state.peptides if pep.note is None]\n", " for pep in state.peptides:\n", " pep.timepoints = [tp for tp in pep.timepoints if tp.note is None]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "create an Analysis object and load the results, note: the temperature and pH are crucial to calculate the instrisic exchange rates. make sure to input the correct ones. The chunk size and chunk number can be altered by user. in this tutorial it was automaticaly determined by a help function." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "from pigeon_feather.analysis import Analysis, get_index_offset\n", "from pigeon_feather.tools import optimal_chunks\n", "import matplotlib.pyplot as plt\n", "\n", "RUN_NUM = 3\n", "\n", "apo_states = [\n", " state\n", " for data in hdxms_data_list\n", " for state in data.states\n", " if state.state_name == \"APO\"\n", "]\n", "\n", "tri_states = [\n", " state\n", " for data in hdxms_data_list\n", " for state in data.states\n", " if state.state_name == \"TRI\"\n", "]\n", "\n", "ana_apo_1 = Analysis(apo_states, temperature=293.0, pH=7.0)\n", "\n", "chunk_num, chunk_size = optimal_chunks(len(ana_apo_1.protein_sequence))\n", "ana_apo_1.load_bayesian_hdx_oupt_chunks(\n", " chunk_size=chunk_size,\n", " chunk_num=chunk_num,\n", " state_name=\"APO\",\n", " run_num=RUN_NUM,\n", " N=200,\n", " bayesian_hdx_data_folder=f\"{out_path}/bayesian_hdx_output_chunks\",\n", ")\n", "\n", "\n", "ana_tri_1 = Analysis(tri_states, temperature=293.0, pH=7.0)\n", "\n", "ana_tri_1.load_bayesian_hdx_oupt_chunks(\n", " chunk_size=chunk_size,\n", " chunk_num=chunk_num,\n", " state_name=\"TRI\",\n", " run_num=RUN_NUM,\n", " N=200,\n", " bayesian_hdx_data_folder=f\"{out_path}/bayesian_hdx_output_chunks\",\n", ")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# for mini in ana_apo_1.results_obj.mini_peps:\n", "# print(mini.std_within_clusters_log_kex)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fitting check" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "two fitting check functions are available: 1. centroid level fitting check 2. isotopic mass envelope fitting check. \n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from pigeon_feather.analysis import (\n", " check_fitted_isotope_envelope,\n", " check_fitted_peptide_uptake,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### envelope check" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "check_state_name = \"APO\"\n", "check_ana_obj = ana_apo_1\n", "\n", "\n", "all_peps = [\n", " pep\n", " for data in hdxms_data_list\n", " for state in data.states\n", " for pep in state.peptides\n", " if state.state_name == check_state_name and pep.note is None\n", "]\n", "all_tps = [\n", " tp\n", " for pep in all_peps\n", " for tp in pep.timepoints\n", " if pep.get_timepoint(0) is not None and tp.deut_time != np.inf and tp.deut_time != 0\n", "]\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.18086398727111275" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7kAAAMJCAYAAADGbfG1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUxf8H8PfdpXdSCFUSQgshtIB0AkiTJr1EqgUsIIKKIiIIIkX9KUURBWkSkC4QkBp67y0gkACGQIAEUki/298fZ+6bzW6Sq6nv1/PcAzs3O/O5TbvPzeyMQhAEAURERERERESlgLKoAyAiIiIiIiIyFya5REREREREVGowySUiIiIiIqJSg0kuERERERERlRpMcomIiIiIiKjUYJJLREREREREpQaTXCIiIiIiIio1mOQSERERERFRqcEkl4iIiIiomElNTS3qEIhKLCa5RAQA0Gg0qFq1KhQKhejx3nvvGdTO9OnTJW3kfCiVSlhbW8PBwQGenp6oXbs2unbtih9//BFJSUkGx33lyhXMnTsXnTp1Qu3ateHu7g5bW1tUqlQJDRo0wNtvv40///wTL168MLhtczt8+DDGjBmDOnXqwMXFBQ4ODqhVqxbefvttXLx40eh2Y2Nj4eXlJbrOd+/eNSnWkSNH5vt1LOiR7e7duya1M336dJNeBwBcvHgRM2bMQHBwMKpXrw4XFxfY2NjAy8sLgYGBGD58OP74448C31DKvZZ27drpHceFCxcwdepUdOjQAVWrVoWjoyOsrKzg5uaG6tWro0ePHvjqq69w/fp1vdoz5Gtka2uLcuXKoUaNGujcuTOmTp2KyMhIk9rP/ll2dHRE+fLlUbduXbz22mtYunQp0tPT82x3xYoVZv066/M9ZmVlBVtbW7i5uaFatWpo0aIFPvzwQ1y5csXg/jQaDf7++2+MHTsWzZs3h7e3N+zs7GBjYwNPT08EBARg0KBB+OmnnxAbG6tXmz4+Pnp9HZVKJezs7ODl5YWAgAD06dMHP/74IxITE/Ntv127dpK29Pkd8c4778jGERQUhISEBF09ue+V3377rcD25b52K1asMCp+ub89cm3lruPj41NgnIUtIyMDc+fOxcCBA4s6FJ1ly5YZ/LsvLi4O33//PYKDg1GpUiXY2trCy8sLbdq0wezZs/H8+XO9+z927BhGjx6NgIAAuLq6wsbGBhUqVECHDh0wb948vdu6c+cOJk6ciPr168PNzQ0ODg6oUaMGRo0ahYMHD+odj5zOnTuLrpGp7ZGJBCIiQRB27twpAJA8XFxchBcvXujdzrRp02Tb0efh7e0tHDx4UK9+Lly4ILzyyit6t+3l5SV8++23Qnp6urGXyGjx8fFC//79841PqVQK06ZNM6r91157TdJeVFSUSTGPGDHC6K9jzj8tUVFRJrVj7DURBEGIjo4WBg4cqHdfHh4ewurVq/NsT+61BAcHFxjHlStXhA4dOhj0urt37y78888/+bZr6tfIxsZGmD59ukXar1GjhnDlyhXZdpcvX27Wr7Mp32NKpVL49NNPBY1Go1dff/31l1CjRg2927e2thbGjx8vJCQk5NtutWrVTPpali9fXti6dWue7QcHB0vOKeh3xBdffCHbV7169YSnT5+K6sp9r7i7uwtPnjzJtw+5r93y5cuNil/ub49cW7nrVKtWLd8YC9uOHTuEmjVr6v37pTDcu3dPcHFxMeh337p16wQPD498v2/LlSsn7Ny5M992njx5IvTs2bPAnwE3Nzdhy5Yt+bb19ddfC9bW1vm2M3DgQCEpKcnAKyQI+/btk7QVHh5ucDtkPkxyiUgQBEHo169fnr/0ly1bpnc7piS5AAR7e3vh1KlT+faxZs0awc7Ozqj2W7VqJTx69MjUy6W3p0+fCg0bNtQ7vu+++86g9lesWCHbTmlJcvNLwvLz8OFDwc/Pz6g+Z8yYIdumMUnu4sWLC3xTldfD1dVV2L9/v8W+RtmP2bNnW6R9T09P4c6dO5J2i1OSm/2YOHFivn2kp6cLb731ltHtBwQECPfv38+zfVOTXED7oUVeHxIamuQuXLhQto9atWrJ/v7M63tl1KhR+V5XJrliISEhBv1+KQwajUb2Q7r8Ytu4caOgVCr1+r5VKpXCjh07ZNtJTEwUAgMD9f4ZUCqVwubNm2XbmjBhgt7ttGjRwqBE9/79+0KlSpUk7TDJLVpWIKIy78mTJ9i2bVuez//666944403jG7fx8cHHh4eALRT/TIyMvDs2TM8fPgQgiCI6qampmLEiBG4evUqVCqVpK1169bh9ddfl+1HpVKhSpUqcHFxQWxsLB4/fiypc+zYMbRs2RKnT5/WxWRJclORVSoVateujSdPnuDJkyei57744gsMHToU3t7eBbYdHR2NDz/80IzR/o+vry+CgoIKrJeQkIDbt2+LyiZNmqT7v62trV7tAEBERARSUlJ0x97e3hgxYoSeEYsNGDAAd+7ckZTb2tqiSpUqcHBwQHR0NJ49eyap8+WXX6JVq1bo0KGDUX1n+/bbb0XXIidra2tUrlwZjo6O+Pfff2WnmyYkJKBPnz44deoU6tSpo1eftWrVgrOzs+5YEARoNBpkZWXh8ePHsj8TX3zxBXr37q1XHznbV6vVSE9PR1xcnGy7T58+xTvvvIM9e/boFbs5OTk5oXbt2gC01yArKwvJycl48OCB7FTqH374AX379kWrVq0kz6nVagwYMCDP35GOjo6oVKkSlEol7t69K9v+tWvX0LNnTxw/fhwODg56vYbcPzfZX8uMjAzcv38fycnJouczMjIwcuRI/PPPP7C2ttarDznr1q3DBx98ICn39fXF/v379frdlG3FihV48803Za8rSR07dqyoQ5D46aefcODAAb3rp6SkYOzYsdBoNKJyZ2dnVK5cGXfv3kVaWpquXKPRYNSoUbh9+zZcXFxE50ybNk32loLy5cvDxcUFUVFRUKvVorbeeOMNBAcHw93dXVf+119/4YcffpC0U6VKFSiVSty/f19UfuLECXz++edYsGBBga83IiIC3bt3R0xMTIF1qZAVbY5NRMXB999/X+Anm5cuXdKrLX0/TRcE7af4eU0n3b59u6T+xYsXZUdwvby8hJ9++kmIi4sT1b9x44bw3nvvCSqVSnJOp06dBLVabfC1MkRYWJik3+bNmwv37t0TBEH7Cfm8efMkdebNm6dX+126dMnz62XqSK6+unXrJur31Vdf1XvqZ07Hjh0TfZ1UKpVw5MgRo2I6ePCg5HrUrl1b2LJli+RrHh4eLjuK1rp1a0m7hozk7ty5U1AoFLJxrFmzRkhMTBTVv3HjhjBy5EjZr+Urr7wi24fc6Fl+IwcajUbYsWOH4ObmJjnvo48+Mqn9a9euCe3atZONP/e05cIYyc3r65KSkiIsXrxYsLW1lZzTr18/2XM+/fRT2dfVuXNn4cCBA0JmZqaurkajEfbv3y+0adNG9pyZM2fK9iH3PZiftLQ0Yd68ebLfY3K/O/Udyd29e7fszIMqVark+zslv1H/wMBA0TXKiSO5Yrm/D4p6JPfWrVuCg4OD7Nc1r9h+++03Sd3PP/9cyMjIEARBEOLi4oSuXbtK6ixdulTUTnJysqRvb29v4cCBA7o6Dx48kB1lnjNnjqit3KPBnp6eot9lu3btElxdXUV1lEqlcP369Xyvz9KlSwVHR8c8v/c5klu0mOQSkVC3bl3RL+aKFStKflmPHTtWr7YMSXIFQfumsEWLFpJzPvzwQ0lduTeO/v7+QnR0dL4xbdu2TfZNbX73X5pD7ntlnZycZKf6BQQECAAEOzs7wdfXV5g0aVKBbS9evDjPP6x5vYE1t59++knUp5eXl/D48WOD20lMTBSqV68uasvYacqCIAhTpkyRXI/83qxcuXJFMrVOqVRKPjTRN5lKTU0VqlSpIqnbt29fITU1Nd/YFyxYIPv1PH/+vKSuoUlutkWLFknOa9Gihcntp6amCj4+PpJzfvzxR1G9okxys/3yyy+Sc8qVKyf5gObixYuyH5LNnTs33/azsrJkP8Bzd3eXTfgMTXKzyd3rP3nyZEk9fZLEU6dOyb5hr1ChgnDz5s184yhoavv3338vex6TXLHilOSq1WqhVatWeX5N84ot99+99u3bS+rcvn1b0t77778vqrNp0yZJnVWrVknaevjwoeTve8eOHXXP37hxQ9LOb7/9Jmln/fr1ev0saTQaYffu3ULLli3z/Z7X9/cxWQ5XVyYq406cOCFZzXXatGmoW7euqEyf1WeNoVAo8NZbb0nKc6/8unfvXhw5ckRU5uDggK1bt6Jy5cr59tGzZ0988803kvLZs2dLpkubS2JiInbt2iUq69Onj+xUvz179iAuLg6pqamIjIzE3Llz8207KioKn3zyiVnjNdSDBw8kU3EXLFgALy8vg9vKvdJvvXr18Pnnnxsdm9zUWVdX1zzr16tXTzKdUqPR4N69e0b1v3z5ckRHR4vK6tevj9DQUNjZ2eV77rhx4/Dqq6/qjlUqFfz9/REVFWVULHLatm0rKcs9bd4YdnZ2GDZsmKS8oFWci8KoUaMkt0M8e/ZMskLrN998I5oOCQCjR4/Ocxp6NpVKheXLl8PT01NXZm9vDz8/P5NXPs/JXF/Lmzdvonv37pJV6D09PbFv3z7UqlXL6BgB7d+UBw8emNRGaZa9Gm/u3zmHDh2SXQVablXq7NtiLl68iDfeeAN+fn6ws7NDxYoV0adPH4SFhRkU03fffWfU9OnffvsNhw4dwpIlSzBhwgSMHz9eUsfNzU1SZm9vLzqW23Ggc+fOkrIKFSpIvj9z/v49efKk5JyuXbtKyvr3748KFSqIyjZu3Cipt23bNnTp0gXHjx8XlTs6OkrqUtHiPblEZdyyZctEx7a2thg0aBASExNFb+SeP3+O9evXG32PZH4qVqwoKct9X9sff/whqfP222/r/ebrgw8+wHfffYeHDx/qyq5fv46zZ8+iadOmBkZcsIsXLyIjI0NUJveGFAAqVaqkd7uCIGDkyJGi+/H69euHTZs2GReokT7++GPRG+L27dtj8ODBBrdz7do1/PTTT6KyRYsWmXRPYc7EItuIESOwevVqyZuYbNu2bZPc41i+fHmj+s/9MwVokyVbW1u9zp87dy769++PBg0aICAgoMDE2FByH1blvI/XFPr8LBcHNjY28PDwkHwgkjPW58+fY/PmzaLn7ezsMGvWLL36cHBwwMqVK5GcnIwGDRqgZs2aUCrNO7Zgjq9ldHQ0OnfujKdPn4rK3dzcsGfPHgQEBJgUIwAkJyfjww8/xIYNG0xui/I2d+5cTJkyRfTBzKNHj7B161Zs3boV/fv3x+rVqwv8nXL9+nV8+eWXumNXV1c0adIE+/fvLzAGLy8veHl55fn3DtDe953byy+/LDp+44030Lx5c8TExOgeeX2ImpmZKTrO+frktvGS+zugUCgQEBCAR48e6cpu376N5ORkODk56crkPhgfNGgQgoODDd5ykSyLI7lEZdiLFy/w559/isp69eoFNzc3DBs2DFZW4s/Bfv31V4vEERERISnLPeIZHh4uqTN8+HC9+7CyspJNwiy1j93ly5clZQEBAbh16xaGDx+OihUrws7ODtWrV8eYMWNw8+ZNvdr98ccfcfjwYd1xcHAw3n//fbPFrY8TJ06I3qQoFArZRT30MXHiRGRlZemO+/Tpg+DgYJPikzt/3759qFatGvr06YMVK1ZIFhpxc3NDlSpVRA8bGxuD+3706BHOnTsnKvPy8hKNzhYkMDAQb7zxBoKCgsye4ALAmjVrJGUNGjQwS9v6/CwXB0+fPpWMeCqVStEHJLt37xZ9bwJA9+7dZT9EyUu3bt0wcOBA1K5d2+wJblZWluT3N2DY1zI+Ph5dunSR/Dw4OTlh165daNSokVGxlStXTjJat3HjRuzevduo9qhgixYtwmeffSaZeZDTxo0b8dprr0kWhcopKysLw4cPF33g88MPP6BKlSomxZeamoobN27giy++wMSJE0XP1a1bF3379hWV+fj4oFu3bnjrrbfw5Zdf4pdffpH9GYqNjZUsflitWjXd/+WS0txJcV4EQcC1a9fyfN7LywurV6/GunXrJCPRVPSY5BKVYX/++adk9Co7caxQoYJkSs/x48fz/YVvjPj4eNkVDHOu9JqQkIB///1X9Ly9vb3Bb8xzf1IMAKdOnTKoDX3JTdGMiIhAo0aNsHr1ajx69Ajp6emIiorCr7/+isDAQMyfPz/fNm/evIkpU6bojh0dHfH7779DoVCYPf78TJ8+XXTco0cPo5KkkydPSlbezfn6jNWxY0fZeDIyMrB161aMGjUK1apVQ/Xq1TFq1Cj8+eefSEhIMLlfALhw4YKkrHnz5mZPcPQlCAIyMjIQFxeHS5cu4aOPPpL9eQsJCTG5r6ioKKxatUpSru/K0IVpxowZkje/NWrUEH2wd/78ecl5LVu2tHhsedFoNEhNTcWjR49w5MgR9OzZUxKjk5MTevbsqVd7KSkp6N69u+R2FUA7Jbt58+ZGx+ri4iI74j127NhiObJf1IKCghAUFCT5YM3JyUn3XP369fNtI+cMkgoVKqBevXqys0f27NmDH3/8Mc92Zs2aJfqg7tVXX8WoUaP0fCV58/f3h7+/P2bNmiWa5VSlShWEhYXJ7qagj7lz50o+jOrYsaPu/3IzcuQ+jAMgSZYByK6aXK1aNcyePRuRkZEYOnSooSFTIWGSS1SG5Z5WWb58eVFiO3LkSMk5po7majQapKSk4O7du1i/fj1atmwpe+/joEGDdP/PPcoAaD/lNfSPop+fn6RM7v5Nc0hKSpKUvf/++5J73rJlZmbiww8/zDPRVavVGDFihGh64ty5c1G9enXzBKyn06dPSxJTY+8PnjFjhui4Q4cOem83lB+VSoVVq1bJ3veVU1RUFFasWIHBgwfD29sbgwcPlr0PzBByH27kHFWwtPbt24vu01MqlbC1tYWnpycaNmyI//u//5Oc89prr6FTp04G96XRaJCcnIzbt29j2bJlaN26teTDAgcHB72TLkvKyMjA48ePcezYMQwbNgwLFy6U1Mk906Oov5a577lUqVRwcHBAxYoV0bZtW/z999+Sc2bOnCnaOiU/w4YNk71fEQAWL14s+4bfEO+8847kVpDbt29jzpw5JrVbGp09exZnz56VTPcPCgrSPZffNn/ZPDw8sHPnTjx8+BBXrlxBbGys7N/xefPmSW6nAbQf0uX8cMLV1RW//fab4S8oF7VaLXtPds+ePXHp0iXR/caG2Llzp+RDOycnJwwZMkR3LPdhjdz7mLCwMNn3Irn/lnfq1AmRkZH47LPPRNOYqfhhkktURkVEREgWTggJCRGNZPTs2VOyl+zq1atFe9zpY9SoUaI3ao6OjvD19cWgQYNkp+m+8cYbouRNLmEsKIGRI7f4UFxcnMHt6EMu5uzrZmVlhTp16sjG88knn8iOrMydO1c06tyuXbsiuf8n9xuKZs2aoU2bNga3c+vWLcmb9IIW8zFE/fr1ER4ervcoYnp6Ov788080bdoUU6dONXpBMrn9bvNb9Oqzzz6TJDNyD2PfBBaka9eusve75yVnEq1SqeDs7IyaNWvirbfekh3xKKo3gjkX7FEoFLC1tYW3tzdat24t+3rLly+PcePGicoM/Vo2b95cr6+lXNJhKoVCgSlTphi0b7bcSHW21NRUjB492qSF+ZRKJX755RfJh5Fz5swxOYEmeZs3bxbdGuHq6orly5fjlVdeEdWLjY3F3r17RWUZGRkYPny4aCrvjz/+WODCjvp48OCBZLQV0Cap2Xs7G+rQoUMYMGCAZHr2+PHjRe9b/P39ERgYKKqzZMkSfPbZZ3j06BGePXuGNWvW5Hn7U+6/5Y6OjkU2M4cMw68SURkltzhO7kWlbGxs8Prrr4vKnj17JrvioLm8/PLLkvs75abjGvPmS+5eJUutrpzXfVG9evXC48ePERERgcePH+Pjjz8WPZ+ZmSlZXfny5cv46quvdMdFNU05Li5O8rWfMGGCUW39+uuvomvv7++PLl26mBRfbg0bNsSVK1ewfPlyNGvWTK9zsrKy8PXXX2Py5MlG9Sn3NSlu0zOVSiXatGmDdevWYdeuXRZLQnv06GH0dSxMDg4OCA0NldxrWxK+lvb29ujfvz9OnjyJr7/+2uh2bGxsJFNbw8PDsXTpUpPia9y4sWTNgLS0NMkHCmS65s2b57nYU+6/MwAkH3J/+eWXuHr1qu64W7duZvtA5t69e3BxcUFAQADKlSunK1er1di+fTuaNGmC06dP691eeHg4unfvjpSUFFF5QEAApk6dKqkv97Mxd+5cVKxYEe7u7hg6dCji4+Nl+zJlEUQqWkxyicqgzMxMrF69WlQWGBiIhg0bSurK3YtjiQWoVCoV3nnnHRw4cAAuLi6i53KPJgOQbPWhD7n7LuXaNge5xKFChQpYs2aN7o+8jY0Nvv32W7Ru3VpUb/v27bqFQTIzMzFixAjR1LJ58+bB19fX4JgOHjxY4ChTu3bt8jz/jz/+EL3Jt7OzQ48ePQyOIysrCytXrhSV9e/f3+B29GFlZYWRI0fi5MmTuHv3LpYsWYIBAwYUuBjS3LlzDXrTlU1uhsGzZ88MbsdYtWrVQsOGDeHj4yObpHl5eeHkyZM4fPiw6JYAc7Kzs8OUKVOwZcsWyeJ1xU1QUBAOHz4sGekCiv5rGRQUhHr16uW5InjTpk1x7949bNiwQXa9AX1ZW1tjw4YNksWAAO3MErkRekPMnDlTsoL833//bdEPS8ui3Nug5SR3L3nO6fgnT57Ed999pzt2c3Mz69/5l19+Gc+fP8fVq1cRHx+PlStXihbVS0pKwsCBA/WaJbZz505069ZNcuuPq6sr/vzzT9n7kHv16qXXbTVy9+9ySnLJVbz/+hCRRWzfvl1yL+rDhw/RpEkT2fpKpVK0GuORI0dw48YNvaeC+vj46JLJ7PsE7ezs4OrqiooVK6JevXro3bs3qlatKnu+3LYBUVFRyMjIMGgF3Bs3bujVtjnI/WHs1auXbPngwYNx9OhR3fGzZ88QFRUFPz8/zJgxQ3SfaPv27fHuu+9aJOaC5H5T2rlzZ6P2Bjx06JBkZds+ffqYFJs+qlWrhtGjR2P06NEAtNsX7d69G7///rvsgmqLFi2SXUgpP3JbWuW3WFuVKlVk70POvUKzvpYsWaL7oOLJkyeYNGkSVqxYoXv+yZMnaNu2Lf744w/069fP4PZr1aql26Ime8qynZ0d3NzcULlyZTRq1AivvfaaxX6u9OXk5ITatWvrjpVKJaytreHs7AxPT0/4+fmhY8eOaN26dZ4zIgz9Wvr7+0umZCYlJRk1FRPQ3qeZ7erVq3jzzTdFH7ycOXMGTZo0wd9//w1/f3+j+lCpVAgNDUWvXr3wyiuvYOXKlaKkNiEhAe+99x62bt1qVPuAdhGqH374QfKhyoQJEyR7iZPx8lv128XFBfb29qI1HbI/sElNTcWIESNEs4/MNU05W+7Ec/jw4bh3755om6J79+5h48aN+S7ktGXLFgwePFhyP7GjoyO2b9+e73ZX8+bNg6enJ6ZNmyabTHfp0gU9evSQzDIw1/ZqVPiY5BKVQXJTlZ8+fSrZJzE/v/76q+wiNnKmTZtm0rSncuXKwdfXF1FRUbqy9PR0nD171qDVTk+cOCEps8QeuYD83rd53Vcpt3jUkydP4OfnJ1mk5e7du5KY5e7/7dWrl+4DgO3bt8vuX2qI2NhYyfQ2YxPT3HuPVqtWzeitSvKSmJiIR48e4dGjRwgICJAdsQ8ICEBAQAAmTJiAzz//XHKtjRnJDQoKgpWVlSjZuXjxIpKSkmTfLI0dOxZjx46VlJtjKrqXlxeWL18OAKJENy0tDYMGDcL69esl23YUJGcSXZwFBQWZvD2Y3BT3nNt35ZZ9rXM6ePAg2rdvb1IcAFCvXj3s378fLVq0EE0pvX//Ptq2bYsTJ06gRo0aBrWpVCqxevVq3SwKR0dHzJ07F8OGDRPV++uvv7BhwwYMGDDA6PgHDhyI33//XbSFUHR0tGSldjKe3EJSOeW+NSf7XunNmzeLPohRKBRYuHChZHG2u3fvio7PnTun+2A8KCgIS5YsMSjeIUOGiJJcADh69GieSe6GDRsQEhIi+SDJ2dkZYWFheq0NMWnSJAwePBgrV67EyZMnkZCQgCpVqqB///7o168fZs6cKTmnsBd3JPPhdGWiMubBgwdm2atw1apVhXp/mtwbxd9//13v81NTU7F+/XpJuaXesOde6AKA7MIbAGSndGbfB5T7nKioKJw7d070kBspunLliu55c3yd9uzZIxrNVygURq+am3vBqddee82k2HJat24dHBwc4Orqitq1ayM4OFi0p68chUKBr7/+WjLKnnvbKn24urpKpp+npaXJ7k1bWH766SfRqCbwv9W6uQBQ3tq3bw8HBwdR2fHjx/PcfsTSnJyc8Oeff0r2Tn769Cn69+9v8M/5L7/8IlqFFgBef/112Q8Ox40bl+c9i/r66aefJLFv2rTJpDbpf+R2IciWmJgoGb3Mno6fe89YQRAkf2POnTsnWaQxOTlZ91xe+7wnJSXlOQVZ7oPgvG4H2LlzJ15//XXJ38Ny5cph3759Bi1++NJLL2Hq1KkICwvD0aNHsW7dOvTv3x8KhUL0ARKgvaUo9+9OKjmY5BKVMcuXL893s3h9xcXFSUbkLEluH89Vq1bpPa1zxowZkvt4a9asadK9bPmRG5m8dOmSbF25e97yug+vqBw7dkx0XLduXaPuZ3706JFkaxZjVmfOS61atURT8gBI7j/PS+4VM429n/Ttt9+WlE2fPt2gmRLm5ODggJUrV0pWuU1OTsaIESNEH17Q/zg4OEgW3gOADz74wGIL1hWkbt26sqNNly5dMnhUVG7bKIVCgQULFkh+FmJjY2Xv2TWEn58fPv/8c5PaKO1MmcERHh6e5/el3KwUuen4pnr69Cl69+6NRo0awd3dHS4uLqJZJDnJbdEl9zfl/PnzGDBggCQZ9/LywsGDBw36G/706VNcunQJ0dHRkuc0Gg0OHTokKmvcuHGxX1eA8sYkl6gMEQRBMqWuQoUKUKvVEAQh38eZM2ck7VliAaq8vPLKK5L97jIzM9G3b98C73lbsWIF5s2bJyn/7LPPjN6AviCVK1eWTHfcsWOHZMoXoN2fL6eqVaua9X6obO3atSvw65zXFM/cU5VbtGhhVAy52zGlLTkNGzZElSpVRGWnTp0qcJXY5cuXS7aMqV+/vlExDBgwQHK/emxsLHr27FngaFhiYiLeeOMNo/rNT7NmzWRXwj5+/Dh+/vlns/dXWnz66aeS+wn37duH9957r8APB27dumWR1aUnTJggO5X6u+++y/ODNEMEBQXJLji4cuVKyR7Zhvr00085MpaP3B8u5E7s8hMZGZnnjBG5faENudVHX+7u7ti/fz8uXryoG5VdtWqV7M+K3P67uW/FefbsGV577TXJKsru7u44cOCA3r+jGzVqBDs7O3h5eaFhw4ayHxRt3rxZslZJ7r2zqWRhkktUhoSHh0s+Pe3bt69ee741adIENWvWFJUdPHjQ6EVVjLFw4ULJG8779++jadOm+PbbbyWLGV29ehXDhw/HqFGjJH9k27Rpk+e+eOaS+z7k9PR09OjRQze1SxAE/N///Z9kQaec974VlJQKgoDw8HBJ31FRUbrnTd1jVa1WSxbtMjYBzL1wj7u7u1kTeqVSiTFjxkjK33nnHUyZMkXyJiY+Ph6zZs2SXcxLbvaAPqytrbF48WLJBygnT55E/fr1sXTpUsmsgn/++QdfffUVfH19Ze/tNIcZM2bI3rc5ZcoUPHz40CJ9lnR+fn744osvJOW//PILmjdvjl27donuhdRoNDh+/DjefvttBAQE4OTJk2aPSaVSYdmyZZJF97KysjB69GizjMx/8803snsCjxkzRrKqrSFsbGz4oUo+ck/nvnPnDpKTkwHIz/jJ7e233xYllSkpKRg/fjy2bdsmqlelShXdLUAjR47U6+9M7i0Gg4ODJR+OKpVKyYJ2J06cwOjRo3VrR2g0Gvz666/46aefRPWcnZ0lt658+OGHsqOuq1evRr169Qq8HtkqVaokms6/YsUK0Qc2hw8flvzdcHR0lEznpxJGIKIyIyQkRAAgehw4cEDv87/44gvJ+R9//LGozrRp0yR1li9fbrbX8Pvvv0vaz34olUqhWrVqQmBgoFC+fPk861WuXFl4+PCh2WLKS2ZmptCwYUPZOP39/QU3NzfJcy4uLkJMTIxB/YSHh0vaiYqKMtvriIyMlLS/d+9eo9oaPny4qJ1WrVqZLc5sqampQo0aNWS/9gqFQvD19RUaNmwo+Pr6CkqlUrZe3bp1hfT0dFG7UVFRknrBwcF5xrFo0aI8vwetrKwEHx8fITAwUPDy8sqzXn7XacSIEZJ64eHh+V6b8PBwQaFQSM4bNGiQWdrXx/LlyyXtVqxYUQgKCtL7ERoaqmvP0K+LoTQajTBo0KA8vzYODg5CrVq1BH9/f8HZ2bnAr+WUKVMkfVSrVk1SryDTp0+XbX/x4sWSusHBwQb/jvj+++9l2x8/frykbu7vlWrVquXb9uuvv57n9ZH7e6FP/Pr+7cldx8bGxqDvvZCQkHxfmynkXme5cuUEX19fwdXVVVdP7ns+58PT01MIDAwUHB0dZZ//6aefDI4t99c4r5+xmzdvCnZ2drLX2d/fX/D09JSN6dtvvxW1c/XqVdnfVba2tgV+jXr27Clqa/PmzbJ9VqtWTfDz85N97scffzTo+sj9XjPH70syHpNcojLi2bNnkj88Xl5eQlZWlt5tXLt2TfJL3MvLS5QMWDrJFQRBWLduneDg4FDgm0m5R1BQkPDvv/+aNZ78XLt2Ld+EO+dDqVQKW7ZsMbgPSye5cu3fvHnTqLZyv4kbMmSI2eLM6Z9//hEqVqxo1PdIlSpVhPv370vaNCaZWrVqVZ5vNPV5WFlZCR988IGQlJQkadvYJHTMmDGyfe3evdss7RdE7s2goY8ffvhB156lk1xBEISsrCxh/Pjxsm+69X2UK1dO+Pnnn2XbNybJzcjIEAIDAyXnubm5CbGxsaK6xiS5GRkZQp06dWR/T504cUJU19AkNzY2VvZDPqDwk1xDHw0aNMj3tZni888/z7fvxMREQRDkv+cbN26c54d2OR89e/YUNBqNwbHpm+QKgiCsWLHCoJ+VoUOHSmIaO3as0V8jue+/Dh06GBSPWq026PowyS1+OF2ZqIxYs2aNZJXDPn36GHRPat26dSXTVJ88eYItW7aYJUZ9DRo0CGfOnEHfvn31XqijXLlymDFjBo4cOSK5Z9OS6tati0OHDqFhw4b51nN3d8e2bdvQu3fvQonLEAkJCZIyYxfGyt2WpRbYqlmzJs6dO2fw9RwyZAhOnjyZ557Nhho2bBiuXLmCwYMHG/Sz5u7ujg8//BC3bt3C/PnzZfdXNta8efNkfwbef//9PFdCLetUKhV+/PFHhIeHG3wvY82aNTFv3jzcu3fPrHtcW1tbY9myZZLvq+fPn+Ojjz4yS/s//PCDpFyj0eDNN98scMua/JQvXx7ffPONKeGVSu+99x7Kly+f5/NyU3ez9ezZE6tXr5asCJ5TSEgINm7caJYtyvIzYsQIbNy4Ee7u7vnWs7a2xldffYVVq1ZJYso9xdpUmzZtQtu2bfOtY2Njgy+++AIrV67U6zYuKt74FSQqI+T2xs3eH9EQcveoFOYCVNnq1q2LTZs24fr165g3bx66du0KPz8/uLq6wtraGuXLl0dAQACGDx+O1atX4+7du5g6dSrs7e0LPdY6derg7NmzWLlyJbp164ZKlSrB2toaHh4eaNmyJWbPno3IyEh079690GPTh9w9ePm9kTKkLWPb0UfFihWxZcsW3LhxA19++SU6d+6MqlWrwsnJCUqlEvb29qhatSo6dOiAKVOm4OLFiwgNDTX7ol++vr5Yu3YtoqKiMH/+fPTp0we1atWCi4sLVCoV7OzsULVqVbRv3x6ffPIJ9uzZg0ePHuGHH34w+X5qOS4uLvjll18k5bdv38bs2bPN3l9pEhwcjGPHjuH8+fOYNm2a7nvK0dERSqUSjo6OqFGjBnr06IFZs2bptvj65JNPZPdJNlXTpk1lFxT7448/ZO/VN1TXrl3Ro0cPSfn169cxa9Ysk9oeM2aM7AJaZVnlypVx5swZjB49Gi+99JLu70TDhg3xySefwNPTM9/zQ0JCcPHiRbz55puoWrUqbGxsULFiRfTt2xe7d+/GmjVrJPdyW0rfvn0RGRmJ77//Hu3bt4eXlxesra1Rrlw5BAUF4bPPPsOtW7fw5ZdfShLcuLi4fLdEMoabmxvCw8MRGhqKbt26wdvbG9bW1nB3d0ejRo0wefJkXLt2DTNnzmSCW0ooBKGI1sEnIiIiIiKD3L17F76+vqKyadOmGbyNFFFpxo8qiIiIiIiIqNRgkktERERERESlBpNcIiIiIiIiKjWY5BIRAVAoFGZ7EBFR6bVixQqz/b0YOXJkUb8colKJC09RsZRfolBYKwNS2WLKdhi58XuUiKj0UqvVUKvVZmlLqVTCysrKoHMEQUBmZqbJ7RCVJPm9T5NLZ5nkUrHE0TAiIiIiIiqIXDrL6cpERERERERUajDJJSIiIiIiolKDSS4RERERERGVGkxyiYiIiIiIqNTgMmxU4nDlWiIiIiKissPQXTCY5FKxZGNjI/vNbGNjg/T09CKIiIiIiIiIioKtrW2euYEcTlcmIiIiIiKiUoNJLhEREREREZUaTHKJiIiIiIio1GCSS0RERERERKUGk1wiIiIiIiIqNZjkEhERERERUanBJJeIiIiIiIhKDSa5REREREREVGpYFXUARERERCWWIABJSUBGBmBjAzg7AwpFUUdFRFSmMcklIiIiMsTVq0BoKHDqFHD2LJCY+L/nXFyAJk2AZs2AkBCgXr2ii5OIqIxSCIIgFHUQRLnZ2toiIyNDUm5jY4P09PQiiIiIiMq8sDBg9mzg2DHAygpQq7UjubkpFIBKBWRlAa1aAZ9/DnTrVvjxUokgCAIyMzOh0WiKOhQii1AqlbC2tobChFkuhuYGTHKpWGKSS0RExUZcHDBuHLB2LaBUAoYkI9n1Q0KAhQsBd3fLxUklSkpKChISEpCUlAS1Wl3U4RBZlEqlgrOzM1xdXeHg4GDw+UxyqVRgkktERMXC5ctAp07aRNeURESlAjw8gH37gMBA88VHJVJSUhKio6NhbW0NFxcXODo6QqlUmjTSRVQcCYIAjUaDFy9eIDExEZmZmahSpQqcnZ0NaodJLpUKTHKJiKjIXb4MtGkDvHhhWoKbTaUCHB2Bo0eZ6JZhKSkpuHfvHlxcXFCpUiUmtlRmCIKAmJgYJCYmolq1agaN6BqaG3ALISIiIqLc4uK0I7jmSnABbTsvXgAdOwLx8eZpk0qchIQEWFtbM8GlMkehUKBSpUqwtrZGQkKCRftikktERESU27hxpk9RlqNW/+8eXypzBEFAUlISXFxcmOBSmaRQKODi4oKkpCRYckIxk1wiIiKinMLCtItMWWoxILVauwXRzp2WaZ+KrczMTKjVajg6OhZ1KERFxsHBAWq1GpmZmRbrg0kuERERUU6zZ2tXRbYklUrbD5Up2dsEKS39/UVUjKlUKgCw6LZZ/AkjIiIiynb1qnYfXEvvWapWaxegunbNsv1QscSpylSWFcb3P5NcIiIiomyhoYCVVeH0ZWWl7Y+IiMyKSS4RERFRtlOngKyswulLrdb2R0REZsUkl4iIiAgABAE4e7Zw+ztzRvsvERGZDZNcIiIiIgBISgISEwu3z8REIDm5cPskIirlmOQSERERAUBGRtnql4hKnRUrVkChUEChUODgwYNmb3/69Om69vft22f29s2FSS4RERERANjYlK1+iYhKqUJaPpCIiIiomHN2BlxcCnfKsosL4ORUeP0R6UOtBo4cAR4+BCpWBNq00e7tTFRCcCSXiIiICAAUCqBJk8Ltr2lT7b9ExcXmzYCPD9C+PRASov3Xx0dbTlRCMMklIiIiytasWeHtk6tSafsjKi42bwb69weio8XlDx5oy5noUgnBJJeIiIgoW0hI4e2Tm5Wl7Y+oOFCrgfHj5be0yi778ENtPaJijkkuERERUbZ69YBWrQClhd8iqVRA69ZAQIBl+yHS15Ej0hHcnAQB+Pdfbb1SJHul4Dlz5gAAtmzZgi5dusDb2xsODg6oWbMmPvroI8TGxurOuXv3LsaNGwc/Pz/Y2dnBw8MD3bp1Q3h4eIH9HTp0CMOHD4efnx/s7e3h7OyMOnXq4J133sHFixcLPD8jIwOrVq1C+/btUalSJTg4OKBu3br48ssvkZSUpPfrvnTpEt555x3Url0bTk5OcHR0RK1atfD222/j/PnzerdTbAlExZCNjY0AQPKwsbEp6tCIiKi027FDELRv6S37CAsr6ldKhSw1NVW4fv26kJqaWtShSIWG6vd9Gxpa1JGaVfZ7zK+//loICQmRff8JQKhWrZrw4MEDYefOnYKLi4tsHYVCIaxYsUK2n4SEBKFfv355tp99/tixY4XMzEzZNmJiYoTGjRvneb6Pj48wbdo03XF4eLikDbVaLXz00UeCQqHIN5YPPvhANo6c7e/du9eoa27Mz4GhuQFHcomIiIhy6t4dGDLEcqvJqlTaacrdulmmfSJjVKxo3nolzPz58xEaGoqAgAAsXboUx44dQ2hoKGrVqgUAuHfvHoYOHYr+/fsD0O4Xe/jwYRw8eBDvv/8+FAoFBEHA+PHjJSOq6enp6NWrFzZt2gQAqF69OhYsWICjR4/i0KFD+Oabb+Dl5QVBELBo0SKMHDlSEl96ejrat2+vG2Xt0KED1q9fj5MnT2LdunVo27Yt7t69i5kzZ+b7Ot999118//33EAQBgYGB+Pnnn3Hs2DEcO3YMP//8MwL+m12yYMECvP/++yZd0yJlVPpNZGEcySUioiL19KkglC8vCCqVeUdvVSptu3FxRf0KqQgU65HcrCxBqFIl/+/fqlW19UqRnO8zmzdvLrx48UL0/P379wUrKytdHWdnZ+Hq1auSdiZOnKir89dff4memzt3ru65jh07SvoQBEF49OiRUK9ePV29tWvXip6fOXOm7rkxY8ZIztdoNMLbb78tej25R3K3b9+ue2748OGyI7UZGRlC37598xyt5UguERERUUnl4QHs2wc4OppvRFel0ra3bx/g7m6eNonMRaUC5s/Pv86PP5bq/XK//fZbODg4iMqqVq2K5s2b647HjRunG+3MqXfv3rr/3759W/d/jUaD7777DgDg4uKCtWvXSvoAAG9vb/z5559Q/rceQPY9wgAgCAJ++eUXAEDlypUxX+brpFAosHDhQvj4+OT5+ubOnQsAKF++PH755RdYyawkb21tjV9//VUX4w8//JBne8UZk1wiIiIiOYGBwNGj2oTX1Df2KpW2naNHte0SFUd9++a9hZaVlfb5UsrJyQktWrSQfa5KlSq6/3fs2FG2Tvny5XX/zzld+ezZs3jy5AkAYODAgfD09Mwzhrp166J9+/YAtAtDxcTEAADOnz+PBw8eAAAGDBgAW1tb2fNtbW0xfPhw2eeeP3+O48ePAwBat24Ne3v7POPw8PBAs/+2Nzt06BCyCmvFeTNikktERESUl8BAICICGDTItHYGD9a2wwSXiru8Vha39IrjRaxq1apQ5fFhVs6ksmIe9yTnrCPk2Ibp6tWruv/nlUTn1LJlS8m5169f15U1atQo3/Nffvll2fILFy5Ao9EAADZv3qxbVTqvR/ZK0S9evBCtLF1SlO7vViIiIiJTubsDa9YA+Yx85EmpBMLCgD/+4BRlomLMxcVFr3pyU3zz8/TpU93/vb29C6yfs05cXBwAiJLM/EaCAaBChQoFxmGo+Ph4o88tKoZ9lYiIiIjKKgPf3ALQ3oPLVZSJij1Dk1d9ZY+eGlNfacTouY2NjWx5zinH48ePl13BOS81atQwOI6ixiSXiIiIiIjIAjw8PHT/12fa76NHjyTnVqpUSVf2+PHjfM/Pa9TVPcdMkszMTDRs2LDAWEoyTlcmIiIiIiKygPr16+v+f+LEiQLr56xTp04dABCt5nzq1Kl8z79w4YJseWCO9QAOHDhQYBw///wzfvrpJ4SFhXHhKSIiIiIiItIKCgqCl5cXAGD9+vW6+2zlXL9+HQcPHgQA+Pv761Z1btCgAWrVqqVrIyEhQfZ8QRCwevVq2ecqVaqkS3Rv3LiBv//+O884IiIiMHbsWIwdOxYffPCBxaZyWxKTXCIiIiIiIguwsrLC+PHjAQCJiYkICQlBamqqpN6TJ08wZMgQ3crMn376qej5CRMmANBORx45ciQyMzMlbcyYMQPnz5/PM5aPP/5Y9/8333wTt27dktRJTk7G0KFDdXF8+OGHBbzC4qnkpeVERERERKWZszOQkVE0fefVb0YGkMf+rBZnYwPk2Hu2pJk0aRJ27tyJ48ePY8+ePahfvz7Gjx+Pxo0bQ61W4/jx4/jhhx909+wOHjwYI0aMELUxZswYbNiwAQcOHMDWrVvx8ssvY8KECahTpw4ePnyIZcuWYfv27XB0dMSLFy9k4xg+fDi2bt2KLVu2ICYmBkFBQRg3bhw6duwIa2trXL58Gd9//z0iIyMBaLczevfddy17cSyESS4RERERUXGSkVF0SW5+imNMJYC1tTV27dqFoUOHYvv27bh9+zbGjRsnqadQKPDxxx9j1qxZss9t27YNISEh2LZtGy5evChJhL28vPDdd99JynNau3Yt3n33XSxfvhxJSUn45ptv8M0330jqdejQAZs2bSqRU5UBTlcmIiIiIiKyKBcXF2zbtg179+7F66+/Dh8fH9jZ2cHV1RX169fHhAkTcOXKFcybNw/W1taybTg6OmLr1q3YsWMHunfvjqpVq8LW1ha+vr4YN24cLl++jLp16+Ybh62tLX7//XecOnUKb7/9NmrXrg0nJydYW1ujUqVKeO2117Bx40bs27cPbm5uFrgShUMhZE+4JipGbG1tkSHzaaGNjQ3S09OLICIiIirzXFwMnzLp7AwkJlomHipx0tLSEBUVBV9fX9jZ2eVd0daWo6Y52dgAfP9Xauj9c5CDobkBR3KJiIiIiIio1GCSS0RERERERKVGybyTmIiIiIiotLKxKeoIihdeDzIQk9x8REREYNWqVTh69Chu3bqFZ8+eQaVSwdvbG4GBgXj11VcREhICV1fXIonv/v372LRpE44dO4YrV64gLi4OCQkJcHZ2hqenJ2rXro127dqhV69eqFmzplF9HDx4EIsWLTI51hEjRqBnz54mt0NERERU6pXg7XKIigMuPCUjNjYWY8eOxcaNGwus6+zsjC+//BITJ06EUlk4s7/v3buHSZMmYdOmTVCr1QXWVyqV6N+/P2bPno3q1asb1Nenn36KefPmGRuqzrfffivagLogXHiKiIiKHS48RSYyZsEdotKGC08VgcuXL6NBgwZ6JbgAkJSUhE8++QQ9e/ZEamqqhaMDNm/ejAYNGmD9+vV6JbgAoNFosH79egQFBWH79u0G9XfhwgVjwiQiIiIiIioSTHJziIyMRPv27REbGyt5rl69eujWrRtatWolu2fUzp07MXDgQFhyYHz79u0YNGgQEhISJM95eXkhODgYvXr1QnBwMNzd3SV1nj9/jj59+mDXrl1693np0iWTYiYiIiIiIipMTHL/k5WVhf79+yM+Pl5U3rt3b9y6dQtXrlxBWFgYjh49iocPH2Lp0qWSe3F37NiB+fPnWyS++/fvY/DgwcjKyhKVt2/fHkeOHEFsbCwOHjyIv/76CwcPHsSTJ0+wd+9eNGnSRFRfrVZj0KBBiIqKKrDPmJgYPH78WFQWHR0NQRAMfhgyVZmIiIiIiMhYTHL/s3jxYsnU3AkTJmDLli2oUaOGqNzOzg5vvvkmzp07h4oVK4qemzlzpuxIq6kmTZqElJQUUdlHH32E/fv3o3Xr1lAoFKLnlEolOnbsiOPHj2Po0KGi55KSkjB58uQC+8x9Pby8vFC5cmUjXwEREREREZHlMckFkJ6ejpkzZ4rK2rZti++//z7f8/z8/LBjxw5YW1vryuLj4ws8z1DR0dFYv369qKxnz5749ttvJcltbtbW1li+fDmaNWsmKv/zzz9x//79fM+9ePGi6LhRo0b6B01ERERERFQEmOQC2LRpE548eSIqmzNnToEJJAA0btwY77zzjqhsyZIl0Gg0Zotvw4YNont9FQoF5s6dq1d8AGBlZYU5c+ZIynfs2JHveblHcpnkEhERERFRccckF8C6detEx/Xq1UOLFi30Pv+9994THT9+/BiHDx82S2wAcODAAdFxYGAg/P39DWqjbdu2ksWoClo5mSO5RERERERU0pT5JDczMxPh4eGisp49exrURp06dST37W7atMnk2LJdv35ddPzyyy8b3IZSqYSPj4+o7NGjR3nWT0pKQmRkpKiMSS4RERERERV3VkUdQFG7ePEikpOTRWWtW7c2uJ2WLVvi9u3buuODBw+aGprO8OHDER0djZiYGMTExMDPz8+odtLS0vSue/HiRdEUaScnJ0kiT0RERGQUQQCSkoCMDMDGBnB2BvS8DYuIqCBlPsm9du2apKxBgwYGtxMYGCg6vn79OlJTU2Fvb290bNmmTZtmchupqamSkdlKlSrlWT/3VOYGDRpAqSzzA/9ERERkrKtXgdBQ4NQp4OxZIDHxf8+5uABNmgDNmgEhIUC9ekUXJxGVeGU+a4mIiBAdOzg4GLVNTu5RTo1Go9detIVl165dkpHcevn8Acnrfty4uDgsXLgQffr0gY+PDxwdHXWjvN26dcOiRYvw4MEDs8dPREREJVRYGNC6NRAYCHz7LRAeLk5wAe1xeLj2+cBAbf2dO4smXiIq8cp8khsTEyM6NnYf2Nz75QLAvXv3jGrLEubNmycp69WrV571cye5L730EsaNG4fKlSvjgw8+wNatW3Hv3j2kpKTgxYsXuHPnDnbt2oVx48ahRo0amDRpkkX2CyYiIqISIi5OOyrbowdw4oS2LCtLO1VZjiBonwe09bt3B15/HYiPL5x4iajUKPNJbu7Fl7y9vY1qx8vLS1L29OlTo9oyt+XLl+PUqVOislatWqFatWqy9TMzMyXTuCdPnoxFixYhPT29wP7S0tLw7bffolmzZqL7lImIiKiMuHwZqFsXWL9ee2zo1orZ9f/8E/D3B65cMW98RFSqlfkkNz7Xp4MuLi5GtePs7Cwpe/bsmVFtmdM///yDiRMnSsqnT5+e5znXr19HRkaGqEytVuv+b21tDX9/f3Tt2hUdO3ZEnTp1ZNu5efMmmjVrhps3bxoXPBEREZU8ly8DbdpoR3JzvH8wilqtbad1aya6RKS3Mp/k5h6ZdHBwMKodufMMWc3YEuLj49GzZ088f/5cVD5kyBB07Ngxz/Py2j/Xw8MD8+bNQ0xMDK5fv45du3Zh7969iIiIwIMHD/D5559LrkN8fDx69+6NxNz33uQhPT1d77pERERUzMTFAZ06AS9emJ7gZlOrte117Mipy0SkFya5uZJcKyvjFpxWqVSSsszMTKPaMoeEhAR07twZ//zzj6jc19cXP//8c77n5r4fFwCaN2+OCxcu4JNPPoGnp6fk+UqVKmHWrFk4ceIEqlSpInruxo0b+Y4c5zR79my4urpKRpKJiIioBBg3zjwjuLllj+iOG2fedomoVCrzSa461y9huWRVH3LnaQy9/8RMnj17hi5duuDcuXOichcXF2zbtg1ubm75nu/s7IyAgADdqGzNmjWxa9cuVK1atcC+69evj7CwMMnWSYsXL5Ys8iVn8uTJSEhIgI2NTYF1iYiIqBgJCwPWrjV/gptNrdZuQcRVl4moAGU+ybW2thYdZ2Wv6mcguVFbW1tbo9oyRUxMDNq2bStZaMre3h7bt2/Pd9ugbDNnzsTVq1fx4sULPHz4EMePHy8wMc6pfv36mDRpkqgsLS0NoaGhBZ5ra2tr9H3RREREVIRmzwaUFn5rqVJp+yGLUqvVOHjwINauXYuDBw9KBoWIirsyn+TmTkSNnSZbHJLcGzduoFWrVrh69aqo3MHBATt27EDbtm0NbrNChQqy05MLMm7cOMnU7z179hjcDhEREZUAV68Cx44ZvoqyodRq4OhRINcuEGQ+mzdvho+PD9q3b4+QkBC0b98ePj4+2Lx5c1GHRqS3Mp/kurq6io6Tk5ONaicpKUlS5ujoaFRbxti/fz9atGiBu3fvispdXV3x999/o0OHDoUWC6BdpKpx48aistOnTxdqDERERFRIQkMBI9c1MZiVlbY/MrvNmzejf//+iI6OFpU/ePAA/fv3Z6JLJUaZT3I9PDxEx7lXItaX3HnG7rlrqKVLl6Jr166SGCpUqIBDhw6hTZs2hRJHbvXr1xcdJyQk6LXPLhEREZUwp04BRt7yZTC1WtsfmZVarcb48eMhCILkueyyDz/8kFOXqUQo80lupUqVRMexsbFGtSN3nqWTXI1Gg48//hhvv/225F7iOnXq4MSJE2jQoIFFY8hP7g8QACAuLq4IIiEiIiKLEQTg7NnC7e/MGe2/ZDZHjhyRjODmJAgC/v33Xxw5cqQQoyo86enp+Pnnn9GxY0d4e3vDxsYG5cuXR4cOHbBw4UKkpqaK6j9+/Bje3t5QKBRQKBRYv369bLuJiYnw9fWFQqGAUqnE7t27dc+1a9cOCoUCrVu3BgCcPHkSffv2RYUKFWBjY4OqVati6NChOFuYP1+lRJlPcv38/ETHMTExRi0+de/ePUlZ9erVjY6rIGlpaejXrx++//57yXPBwcE4fvw4fHx8LNa/PuQ+6SvMKdxERERUCJKSgMLe4z4xETDyFjOS9/DhQ7PWK0kuXboEf39/vP/++9i/fz8eP36MzMxMPHnyBOHh4fjggw/g7+8v2rmkfPnyWLp0qe543LhxsoM5Y8eO1d1OOHHiRHTp0kU2hmXLlqFNmzbYsmULYmNjkZmZiejoaKxZswYvv/wyfvzxR7O+5tKuzCe5AQEBouOsrCxERkYa3M7NmzdFx+XLlzdqwSZ9JCQkoFOnTti6davkuWHDhmHPnj0oV66cWfoydrVpQDpqa2VlJbkHmoiIiEq4otrbvqj6LaUqVqxo1nolxc2bN9G2bVtERUXBxsYG7777Lnbs2IHTp09jx44dGDNmDGxsbHDv3j106NABN27c0J3bs2dPvP322wC0I7sffvihqO0NGzZg9erVAIAmTZpgdh4rg9+8eRPvvPMONBoN3nnnHezbtw9HjhzBl19+CUdHRwiCgAkTJoiSaiqAUMY9efJEACB6rFmzxuB2OnToIGqja9euFohWEJ49eya8/PLLkpgBCDNmzDC5/TVr1ght2rQRateuLZQrV05QKBTCtWvXjGorKChIFF9AQIDe59rY2Mi+RhsbG6NiISIiMpmzsyBoJ8nq/3B2LuqoLS8hwfDrYo5HYmJRv3KDpaamCtevXxdSU1OLOhSJrKwsoUqVKrLvv7IfVatWFbKysoo6VLNq0qSJAEBwdXUVTp8+LVvn2LFjgq2trQBAaNWqlei55ORkwc/PT3eNwsLCBEEQhOjoaKFcuXICAMHJyUm4deuWpN3g4GDdeSqVSti6daukzvnz5wVnZ2cBgODu7i7ExcWZ4VUXLWN+DgzNDcr8SK6np6dk79j9+/cb1EZKSgqOHz8uKuvYsaPJseWWmpqKHj16SFYptra2xsqVKzF16lST+9BoNDhy5Ahu3ryJZ8+eQRAEyWvTR3x8PC5evCgqK6oFsIiIiMiCnJ2Bwt7j3sUFcHIq3D5LOZVKhfnz5+db58cff4RKpSqkiCxv//79uvtdp06diqZNm8rWa9mypW6U9tixYzhz5ozuOUdHR/zxxx+66/L+++/jxYsXGDVqFJ49ewYA+Pnnn1GjRo18Yxk3bhxee+01SXmjRo3w1VdfAdC+v163bp1hL7KMKvNJLgB0795ddLx161akpaXpff6WLVsk9bt162aW2HIaOXIkjh07JipzcHDAtm3bMHz4cLP0ERQUJCkz5odp8eLFkntye/bsaXRcREREVEwpFECTJoXbX9Om2n/JrPr27QurPLaCsrKyQt++fQs5IsvasWOH7v+dO3fOt27O9/a5B8SaN2+OyZMnAwDu3r2LNm3aYO/evQC0txIOGzaswFjGjh2b53MjR46EUqlN27Zt21ZgW8QkFwAkCWJ8fDwWL16s17lZWVmS+fWtWrWCv7+/2eIDgAULFkhWbbOzs8POnTvRtWtXs/Xj7++PwMBAUdn+/ftx8uRJvdu4f/8+vvvuO1FZjRo18Oqrr5olRiIiIipmmjUrvH1yVSptf2QR2cmUvuUl2fnz53X/r1+/vm6lZLlHcHCwru6dO3ckbU2bNg1N/vuw58KFCwC0739//vnnAuOoUKGCZDHcnMqVK6db0Pb69ev6vbgyrvR9txqhbt26kunFn3/+OU6cOFHguePGjcO1a9dEZRMnTjRrfFFRUfjss88k5StWrBD9wJnL6NGjJWVvvPGGXnsIJyQkYMCAAZK6X375JRT8xJWIiKh0CgkpvH1ys7K0/RGZ6OnTp0adFx8fLymzsrKSLAz1zTffwEmPafW5tzSV4+XlBcD47U7LGia5/5k9e7boE6q0tDT06NEDf//9t2z9jIwMjBs3Dr/88ouovGXLlgVO5cjeEyvn4+DBg3nWnzx5smRvrjFjxmDQoEEFvCrjvPPOO5JVpyMiItC+fXvcvn07z/OuXLmCtm3bSu4Z7tatm17TNIiIiKiEqlcPaNUKsPRon0oFtG4N5HqfQmSM7F1EbG1tceHCBb0fuWcsZlu1apXoePbs2cjMzCwwjrymiOeUfRugtbV1gXUJKKR5JcVfkyZNMGnSJMyZM0dXFh8fj27duqFHjx4YMmQI/Pz88OLFC5w7dw5LliyRJHwuLi5YuXKlWeOKiorChg0bJOVLlizBkiVLTGo7ODhYNrm2srLCypUr0a5dOyTn2IPu4sWLqFu3LkJCQtC9e3f4+voiIyMDkZGR2L59OzZv3izZcsjHxwe///67SXESERFRCTB5MtCjh2X7UKu1/RCZgbu7OwAgPT0dlStX1o2WGiM8PBw//PADAMDNzQ3Pnz/HhQsXMG3aNHzzzTf5nis3Mpzb48ePAeg36ktMckVmzZqFR48eYcWKFboyQRCwfft2bN++Pd9z7ezssH79+gJXTjPUunXroNFozNqmPoKCgrB582b07t0bKSkpuvLMzEysXLlSr2Te19cXe/bsgbe3tyVDJSIiouKge3dgyBBg/XptMmpuKhUwaBBggcU9qWwKDAzUrTtz4MCBfGdJRkREYPPmzfDx8cHLL7+MmjVr6p57/vw5RowYAUEQYG9vj+PHj2PQoEG4cuUK5s2bh+7du6NVq1Z5th0ZGYmEhAS4urrKPv/kyRPcvXsXANCwYUPDX2gZxOnKOSiVSixbtgyffvqpXtMGslWpUgW7d+9Gly5dzB7ToUOHzN6mvjp16oQzZ85IFqLSR+/evXH69GmzJ/1ERERUjC1cCHh4aBNSc1KptO0uXGjedqlMy7l46/z58yEIQp51v/rqK3zxxRcYOnSoZEHW999/H//++y8A4Ouvv4a/vz+WLVsGlUoFtVqN4cOHi2ZH5qbRaLBmzZo8n1+2bJnu//369SvwdRGTXAmlUok5c+bg/Pnz6N+/PxwcHPKs6+3tjalTp+Lq1ato27atReKJjo62SLv6qlu3Li5cuIDQ0FA0a9Ys35X1rK2t0bNnT+zfvx9btmyBp6dnIUZKRERERc7DA9i3D3B0NF+iq1Jp29u3D/hveimRObz22mu6EdkTJ07ILvQKAGvWrNHtclKpUiUMGDBA99yff/6J0NBQAECLFi10++k2bdpUtxhtZGSkrjwvX3zxhWQxWwA4deoUZs6cCUC7WrPcXrokpRDy+8iCkJqaiqNHjyI6OhqxsbGwsrKCp6cnGjVqhMDAwFK5nHp+nj17hhMnTuDBgweIi4uDRqOBu7s7atWqhZdfflmvFeT0YWtri4yMDEm5jY0N0tPTzdIHERGRQVxcgKQkw85xdgYSEy0TT3F25QrQsSMQF2fa1OXsEdx9+wAjZpYVN2lpaYiKioKvry/s7OzyrOfs7Cz7Pqgw5NevjY1NIUYi7jfJ0J89PZ0+fRpt27bVvb9s27YtRo8ejRo1aiA2NhZbtmzB6tWroVaroVAosH37dnTv3h0A8ODBAwQGBuLZs2ewtbXFxYsXUadOHV3bqampaNCgAW7dugUA+Ouvv9CrVy/d8+3atRPN2nR2dsZHH32EV155BWq1Grt27cL8+fORlpYGlUqFPXv2oEOHDha5DoVJ35+DnAzNDZjkUrHEJJeIiIodJrmGiY8Hxo0D/hvlMsrrrwMLFpSaEVx939zn9T6orLL0+78jR45g4MCBePToUZ51HB0d8euvvyLkv+2rBEFAly5dsHfvXgDalZTlRoKPHDmC4OBgCIKA8uXL48qVKyhfvjwAcZI7ZcoUzJo1S7ZvFxcXrF+/3iK3RhaFwkhyy9YwJBEREREVDnd3YM0awN7e8HOVSiAsDPjjj1KT4FLx1aZNG9y+fRs//vgjOnToAG9vb1hbW8PZ2RmNGjXCZ599hoiICF2CCwALFizQJbhBQUH45JNP8mz7vffeA6BdIfmtt96SrTd9+nTs3bsXXbt2Rbly5eDs7IyGDRti+vTpuHXrVqlJcAsLR3KpWOJILhERFTscyTUOr5sOR3KNU1rf/+Ucyc3MzDRo4duSjCO5RERERERERAZgkktERERERESlRtkYEyciIiIiKiGKahXj4orXgwzFJJeIiIiIqBix1HY5RGUFpysTERERERFRqcGRXCIiIiIiokJ28ODBog6h1OJILhEREREREZUaTHKJiIiIiIio1GCSS0RERERERKUGk1wiIiIiIiIqNZjkEhERERERUanBJJeIiIiIqBAJglDUIRAVmcL4/meSS0RERERUCJRK7VtvjUZTxJEQFR21Wg3gfz8PlsAkl4iIiIioEFhbW0OlUuHFixdFHQpRkUlJSYFKpYK1tbXF+mCSS0RERERUCBQKBZydnZGYmMgpy1QmCYKAxMREODs7Q6FQWKwfJrlERERERIXE1dUVmZmZiImJYaJLZYogCIiJiUFmZiZcXV0t2peVRVsnIiIiIiIdBwcHVKlSBdHR0UhNTYWLiwscHBygUqksOrJFVBQEQYBarUZKSgoSExORmZmJKlWqwMHBwaL9MsklIiIiMpIAIA5AMgAnAB4AmKZQQZydnVGtWjUkJCTg+fPniIuLK+qQiCxKpVLB2dkZrq6uFk9wASa5RERERAZ7DmAlgIUA7uQo9wMwDsAIAG6FHhWVJA4ODnBwcECFChWQmZnJFZep1FIqlbC2ti7UmQpMcomIiIgMsBtAPwApMs9FApgAYAqATQC6FGJcVDIpFArY2NgUdRhEpQoXniIiIiLS024A3QGkQjtVOfeyQdllqf/V252VVajxERERk1wiIiIivTwXBPSDNoktaGKp5r96/VJT8fz5c0uHRkREOTDJJSIiItLDysxMpKDgBDebBtopzatWrbJcUEREJMEkl4iIiKgAgiBgYUaGUecuWLCA+6ESERUiJrlEREREBYiLi8MdQZDcg1sQAcCdO3cQHx9vibCIiEgGk1wiIiKiAiQnJ5t0flJSkpkiISKigjDJJSIiIiqAk5OTSec7OzubKRIiIioIk1wiIiKiAnh4eMBPoYDCwPMUAPz8/ODu7m6JsIiISAaTXCIiIqICKBQKjLOxMercDz74AAqFoekxEREZi0kuERERkR5GWFvDAfq/eVICcAAwfPhwywVFREQSTHKJiIiI9OCmUGATtFOQC3oDpfyv3mZ7e7i5uVk6NCIiyoFJLhEREZGeugAIA2BfQD17ADsBdLaysnhMREQkxt+8RERERAboAiAagCcAtczzKgAPALgWZlBERKTDkVwiIiIiA7lBm8zKUYEJLhFRUWKSS0RERERERKUGk1wiIiIiIiIqNZjkEhERERERUanBJJeIiIiIiIhKDSa5REREREREVGowySUiIiIiIqJSg0kuERERERERlRpMcomIiIiIiKjUYJJLREREREREpQaTXCIiIiIiIio1mOQSERERERFRqcEkl4iIiIiIiEoNq6IOgIiIiIjKFgFAHIBkAE4APAAoijQiIipNOJJLRERERIXiOYD5AGoC8ALg+9+/Nf8rf15UgRFRqcIkl4iIiIgsbjeAKgAmAIjM9Vzkf+VV/qtHRGQKJrlEREREZFG7AXQHkArtVGUh1/PZZan/1dudlVWo8RFR6cIkl4iIiIgs5rkgoB+0SaymgLqa/+r1S03F8+fPLR0aEZVSTHKJiIiIyGJWZmYiBQUnuNk0AFIArFq1ynJBEVGpxiSXiIiIiCxCEAQszMgw6twFCxZAEHJPbCYiKhiTXCIiIiKyiLi4ONwRBMk9uAURANy5cwfx8fGWCIuISjkmuURERERkEcnJySadn5SUZKZIiKgsYZJLRERERBbh5ORk0vnOzs5mioSIyhImuURERERkER4eHvBTKKAw8DwFAD8/P7i7u1siLCIq5ZjkEhEREZFFKBQKjLOxMercDz74AAqFoekxERGTXCIiIiKyoBHW1nCA/m86lQAcAAwfPtxyQRFRqcYkl4iIiIgsxk2hwCZopyAX9MZT+V+9zfb2cHNzs3RoRFRKMcklIiIiIovqAiAMgH0B9ewB7ATQ2crK4jERUenF3yBEREREZHFdAEQD8ASglnleBeABANfCDIqISiWO5BIRERFRoXCDNpmVowITXCIyD47k5iMiIgKrVq3C0aNHcevWLTx79gwqlQre3t4IDAzEq6++ipCQELi6Fs2v5Pv372PTpk04duwYrly5gri4OCQkJMDZ2Rmenp6oXbs22rVrh169eqFmzZom95eUlIQ//vgD+/btw/nz5/H06VOkp6fD1dUVNWvWRHBwMEJCQhAYGGiGV0dERERERGQ4hSAIQlEHUdzExsZi7Nix2LhxY4F1nZ2d8eWXX2LixIlQKgtnYPzevXuYNGkSNm3aBLVabsKPmFKpRP/+/TF79mxUr17d4P4EQcDChQsxdepUJCYmFli/T58+WLhwISpXrmxwX9lsbW2RkZEhKbexsUF6errR7RIRERnNxQVIStId2gKQ/qUCbADo/lI5OwN6/O0s1XjdiMhEhuYGTHJzuXz5Mjp37ozY2FiDzuvWrRs2btwIe/uCllQwzebNm/HGG28gISHB4HPd3NywatUq9OzZU+9z0tPTMWjQIPz1118G9VW+fHns2LEDTZs2NTRMAExyiYioGGKyZhxeNyIyEZNcE0RGRqJp06aIj4+XPFevXj289NJLSEhIwLVr1/D8+XNJnR49emDbtm0W27h8+/bt6Nu3L7KysiTPeXl5oW7dunB1dUVCQgKuXLki+zpUKhW2b9+OV199tcD+BEFA3759sXXrVslz3t7e8Pf3h62tLW7fvo07d+5I6pQrVw4nT55ErVq19HuBOTDJJSKiYofJmnF43YjIRIbmBlx46j9ZWVno37+/JDHs3bs3bt26hStXriAsLAxHjx7Fw4cPsXTpUsm9uDt27MD8+fMtEt/9+/cxePBgSYLbvn17HDlyBLGxsTh48CD++usvHDx4EE+ePMHevXvRpEkTUX21Wo1BgwYhKiqqwD7/7//+T5LgVq1aFX/99RdiYmIQHh6Ov//+G7dv38bp06fRokULUd1nz55h8ODB0Gg0xr1oIiIiIiIiAzHJ/c/ixYtx4cIFUdmECROwZcsW1KhRQ1RuZ2eHN998E+fOnUPFihVFz82cOdOoqcQFmTRpElJSUkRlH330Efbv34/WrVtLRo+VSiU6duyI48ePY+jQoaLnkpKSMHny5Hz7e/jwIaZNmyYqq1mzJs6fP49evXpJ7j9u2rQpDh8+jJCQEFH5hQsXsGbNGr1eIxERERERkak4XRna+06rVq2KJ0+e6Mratm2LgwcPFjj1+Pz582jevDkyMzN1ZVOnTsWMGTPMFl90dDReeukl5PxS9ezZE3/99ZdeU6OzsrLQunVrnDp1SlR+7949vPTSS7LnjB8/HgsWLNAdW1tb49KlS/D398+3r4yMDLRr1w4nTpzQlVWvXh03btyAtbV1gbFm43RlIiIqdjjt1ji8bkRkIk5XNsKmTZtECS4AzJkzR68EsnHjxnjnnXdEZUuWLDHrFN0NGzaIElyFQoG5c+fqfe+vlZUV5syZIynfsWOHbP2UlBSsWrVKVDZq1KgCE1xA+422aNEiUVlkZCR2796tV6xERERERESmYJILYN26daLjevXqSe4vzc97770nOn78+DEOHz5sltgA4MCBA6LjwMBAvRLOnNq2bQt3d3dRWe7p2dn+/vtvycJao0eP1ruvxo0bo1mzZqIyfbZjIiIiIiIiMlWZT3IzMzMRHh4uKjNkix0AqFOnjuS+3U2bNpkcW7br16+Ljl9++WWD21AqlfDx8RGVPXr0SLZu7lHXSpUqISgoyKD+cl/Dbdu2iaZ0ExERERERWYJVUQdQ1C5evIjk5GRRWevWrQ1up2XLlrh9+7bu+ODBg6aGpjN8+HBER0cjJiYGMTEx8PPzM6qdtLQ0veodPXpUdNyqVSuD+2rZsqXo+NmzZ7h8+bLByTIREREREZEhynySe+3aNUlZgwYNDG4nMDBQdHz9+nWkpqbC3t7e6Niy5V7l2BipqamIjIwUlVWqVElSLzMzE7du3RKVmeN6AMC5c+eY5BIRERERkUWV+enKERERomMHBwdUrlzZ4HZyT1fWaDR67UVbWHbt2iUZya1Xr56k3u3btyXTimvVqmVwf56enpJ9hHOOdBMREREREVlCmU9yY2JiRMfGJLgAJPvlAtoteoqLefPmScp69eolKct9PQDzXZPidD2IiIiIiKh0KvNJbu7Fl7y9vY1qx8vLS1L29OlTo9oyt+XLl0v2yG3VqhWqVasmqSu3GJW5rklxuR5ERERERFR6lfkkNz4+XnTs4uJiVDvOzs6SsmfPnhnVljn9888/mDhxoqR8+vTpsvVzXw/AfNekOFwPIiIiIiIq3cp8kpueni46dnBwMKodufP0Xc3YUuLj49GzZ0/JnrdDhgxBx44dZc/JfT0A812Tor4eRERERERU+pX51ZVzJ3VWVsZdEpVKJSkryn1hExIS0LlzZ/zzzz+icl9fX/z88895nieX5JrrmuhzPdLT02VjICIiIiIi0keZH8lVq9WiY7lkVR9y52k0GqPaMtWzZ8/QpUsXnDt3TlTu4uKCbdu2wc3NLc9zc18PwHzXRJ/rMXv2bLi6uiIjI8OoPomIiIiIqGwr80mutbW16DgrK8uoduRGKW1tbY1qyxQxMTFo27atZKEpe3t7bN++XXbboJxyXw/AfNdEn+sxefJkJCQkwMbGxqg+iYiIiIiobCvzSW7uxMvYEcTikOTeuHEDrVq1wtWrV0XlDg4O2LFjB9q2bVtgG3Ixm+ua6HM9bG1tjV7oioiIiIiIqMwnua6urqLj5ORko9pJSkqSlDk6OhrVljH279+PFi1a4O7du6JyV1dX/P333+jQoYNe7eS+HoD5rklhXg8iIiIiIiqbynyS6+HhITrOvRKxvuTOM3Z/WUMtXboUXbt2lcRQoUIFHDp0CG3atNG7rdzXAzDfNSms60FERERERGVXmU9yK1WqJDqOjY01qh258yyd1Gk0Gnz88cd4++23JffN1qlTBydOnECDBg0MajP39QDMd02Y5BIRERERkaWV+S2E/Pz8RMcxMTHIysoyeNuce/fuScqqV69uUmz5SUtLw5AhQ7B161bJc8HBwdiyZQvKlStncLu5rwcA3L9/3+B2MjMz8fDhQ1GZJa8HERERERERwJFcBAQEiI6zsrIQGRlpcDs3b94UHZcvXx6enp4mxZaXhIQEdOrUSTbBHTZsGPbs2WNUggtopyvnHnHN/dr0cfv2bcl2RLmvNRERERERkbmV+SS3SZMmkrKzZ88a3E7ucxo3bmx0TPl5/vw5OnfujKNHj0qemzFjBlatWmXy9jtNmzYVHZvjegBAo0aNjI6JiIiIiIhIH2U+yfX09JTsHbt//36D2khJScHx48dFZR07djQ5ttxSU1PRo0cPnD59WlRubW2NlStXYurUqWbpp127dqLjY8eOIS0tzaA29u7dKzquV68eKlSoYGpoRERERERE+SrzSS4AdO/eXXS8detWg5K6LVu2SOp369bNLLHlNHLkSBw7dkxU5uDggG3btmH48OFm6yf39UhJScH27dv1Pv/FixfYtm1bvm0SERERERFZApNcQJIgxsfHY/HixXqdm5WVhdmzZ4vKWrVqBX9/f7PFBwALFizA+vXrRWV2dnbYuXMnunbtata+6tSpI5myPHv2bGg0Gr3OX7hwIRISEnTHCoUCb775plljJCIiIiIiksMkF0DdunUl04s///xznDhxosBzx40bh2vXronKJk6caNb4oqKi8Nlnn0nKV6xYgeDgYLP2lW38+PGi4wsXLuj1ug4fPoxp06aJynr06IGaNWuaNT4iIiIiIiI5THL/M3v2bCiV/7scaWlp6NGjB/7++2/Z+hkZGRg3bhx++eUXUXnLli3Rt2/ffPtq164dFAqF6HHw4ME860+ePBmpqamisjFjxmDQoEEFvCrjDRkyRLLH7vz58zFhwgRkZmbKnhMWFobXXnsNGRkZujIrKyvMmTPHYnESERERERHlpBAEQSjqIIqLyZMnSxIyhUKBHj16YMiQIfDz88OLFy9w7tw5LFmyBLdv3xbVdXFxwblz51CjRo18+2nXrh0OHTokKgsPD5cs+ARoR3Fr1Kih91RhQwQHB+ebXF+6dAnNmzeX3G9cs2ZNjB49GkFBQXB0dMSdO3cQGhqKsLAw5P52mjt3LiZNmmRwbLa2tqJkOZuNjQ3S09MNbo+IiMhkLi5AUpLu0BaA9C8VYANA95fK2RlITLR8bMUZrxsRmcjQ3MCqMIIqKWbNmoVHjx5hxYoVujJBELB9+/YCF16ys7PD+vXrC0xwDbVu3TqLJLj6aNCgATZv3ow+ffqIvnlu3bqFTz75pMDz33jjDb3qERERERERmQunK+egVCqxbNkyfPrpp7Cy0j//r1KlCnbv3o0uXbqYPabcI76F7dVXX0VYWBiqVq2q9zkqlQpTpkzB0qVLoVAoLBgdERERERGRGJPcXJRKJebMmYPz58+jf//+cHBwyLOut7c3pk6diqtXr6Jt27YWiSc6Otoi7RrilVdeQUREBKZOnYpq1arlWc/Kygr9+/fHqVOn8PXXXzPBJSIiIiKiQsd7cguQmpqKo0ePIjo6GrGxsbCysoKnpycaNWqEwMBA0WJVZcXFixdx48YNPHr0CKmpqXBzc0ONGjXQvHlzODs7m6UP3pNLRETFDu8tNQ6vGxGZyNDcgEkuFUtMcomIqNhhsmYcXjciMpGhuUHZG4YkIiIiIiKiUotJLhEREREREZUaTHKJiIiIiIio1GCSS0RERERERKWGRZPc1NRUSzZPREREREREJGLRJNfb2xtvvvkmDh8+bMluiIiIiIiIiABYOMlNTk7GihUr0L59e/j5+WHGjBmIioqyZJdERERkKEHQbtfy9Kn2X+4uSEREJVih3JMrCAKioqLw1VdfoUaNGmjXrh1WrlyJFy9eFEb3RERElNvVq8DnnwOvvAK4uQGuroCXl/ZfNzdt+eefa+sRERGVIApBsNzHtUqlEgqFQnec3VV2mYODA/r164fhw4ejQ4cOlgqDSiBDN3wmIiI9hYUBs2cDx44BVlaAWi0/cqtQACoVkJUFtGqlTXi7dSv8eIsTFxcgKUl3aAtA+pcKsAGg+0vl7KwdHS/LeN2IyESG5gYWHcn97bff0LZtWwDaBFehUOgSXEEQ8OLFC6xevRqdOnWCj48Ppk2bhtu3b1syJCIiorIpLg4ICQF69ABOnNCWZWXlPTVZELTPA9r63bsDr78OxMcXTrxERERGsuhIbrZ///0Xq1evxpo1axAREaHtOJ8R3pYtW2LkyJEYOHAgnJ2dLR0eFUMcySUiMqPLl4FOnbSJrlptfDsqFeDhAezbBwQGmi++koIjksbhdSMiExmaGxRKkpvTuXPnsGrVKvz55594/PixNogco7s5j+3s7NCnTx+MGDECnTp1KswwqYgxySUiMpPLl4E2bYAXL0xLcLOpVICjI3D0aNlLdJmsGYfXjYhMVOyT3GxqtRq7d+/G6tWrsW3bNt2eunklvJUqVcLw4cMxYsQI1KpVqyhCpkLEJJeIyAzi4oC6dU0fwc0te0Q3IgJwdzdfu8UdkzXj8LoRkYlKTJKbU1JSEjZs2IA//vgDhw4d0t2/my13wvvyyy9j1KhRGDRoEFxdXYskZrIsJrlERGYQEgKsX2/eBDebSgUMGgSsWWP+tosrJmvG4XUjIhOVyCQ3p+joaKxevRpr167F1f+2LchrdNfW1havvfYaRowYgS5duogSYyrZmOQSEZkoLEy7yFRh9FNWVl1msmYcXjciMlGJT3JzunnzJtavX4+//voLFy5c0I3w5gw553TmUaNG4a233sJLL71UVCGTmTDJJSIyUevW2lWRNRrL9aFSAS1aAEeOWK6P4oTJmnF43YjIRKUqyc3p0aNHmDlzJn799VdocvzBzp3wKpVK9OjRAx999BFat25dFKGSGTDJJSIywdWrhbso1NWrQEBA4fVXVJisGYfXjYhMVKz2yTVVamoqNmzYgJCQENSrVw+//PILNBqNJLHNfgiCALVajW3btiE4OBhdu3blvrtERFT2hIYCVlaF05eVlbY/IiKiYqKQ/gLqLzMzE2FhYQgNDcXOnTt1qy7nvB8355RlBwcHVK5cGbdu3dI9n11/z549aNy4MUJDQ9GjMO5LIiIiKg5OnQKysgqnL7Va2x8REVExUWxGcg8dOoTRo0fD29sb/fr1w6ZNm5CSkiKb3AqCgNatW2Pp0qV49OgRbt68ifPnz+PDDz+Ep6enaHXm5ORk9OvXD8ePHy/Kl0dERFQ4BAE4e7Zw+ztzRvsvERFRMVCk9+RevnwZa9aswdq1a/HgwQMA0ntsc5ZVq1YNw4YNw8iRI1G9enXZNjMyMvDrr79i0qRJuvnZgiCgbt26utWaqfjjPblEREZKTASKYnu9xETtfZSlGe8tNQ6vGxGZyNDcoNCnK9+/fx+hoaFYs2YNrl+/DiDvxFYQBDg6OqJv374YOXIk2rdvX2D7NjY2GDt2LHx8fNCrVy9dexERETh58iSaN29ugVdFRERUTMi8CSjV/RIREeVSKElufHw8NmzYgDVr1uD48eO6BDZbzv1ts6cat2nTBiNHjsTAgQPh6OhocJ89evRAy5YtRdOUz549yySXiIhKNxubstUvERFRLhZNctevX481a9Zg9+7dyMzMBCBeQCpbzunIw4cPx8iRI+Hr62ty/02aNBEluUk5psoQERGVSs7O2umhhTnV08UFcHIqvP6IiIjyYdEkd/DgwaKVkAHpfbaOjo7o168fRowYodd0ZENkjwBn91m+fHmztk9ERFTsKBRAkybAgQOF11/Tptp/iYiIioFCma4sNx25bdu2GDlyJAYMGGDUdGR9xMTEiPoMCgqySD9ERETFSrNmwOHDhbONkEql7Y+IiKiYKJQkN3vU1sfHB8OHD8eIESPMMh25IK6urnj33Xfh6+sLX19fNGzY0OJ9EhERFbmQEGD27MLpKytL2x8REVExYfEk18HBAf369cPIkSPRrl07S3cn8uOPPxZqf0RERMVCvXpAq1bAiROARmO5flQqoEULICDAcn0QEREZyKJJ7u+//27R6chERESUh8mTgR49LNuHWq3th4iIqBhRWrLxkSNHWjzBjYyMRGpqqkX7ICIiKnG6dweGDNGOtlqCSqWdptytm2XaJyIiMpJFk9w33nhD91i8eLHZ2j1//jxatWoFV1dX1KxZU7RNEBEREf1n4ULAw8P8ia5KpW134ULztktERGQGFp2uvGLFCt3KysnJyXj33XfN0m5WVhZOnDgBQLtyc2RkJF555RWztE1ERFRqeHgA+/YBrVsDL15opxebSqUCHB217bq7m94eERGRmVl0JNdSrK2tAfxva6L4+PiiDIeIiKj4CgwEjh41z4hu9gju0aPadomIiIqhEpnknjt3TnSsseTKkURERCVdYCAQEQEMGmRaO4MHa9thgktERMWYUdOV09LScPr0aYPOefLkCQ4fPmxMdzopKSm4du0avv76aygUCgiCAIVCAU9PT5PaJSIiKvXc3YE1a4AtWwBDF2xUKoHt27nIFBERlQgKQRAEY05s164djhw5km+dnE1nTy02h+zkNvvfkydPomnTpmZrn4qera0tMjIyJOU2NjZIT08vgoiIiEoJFxcgKcmwc5ydgcREy8RTkuS6drYApH+pABsAur9UvHa8bkRkMkNzA6OnK//888+wsrKCIAh5PnLKr56hj+yEWaFQwN/fnwkuERERERERATAhya1bty4mTpwIQJtsyj1yyquOMQ9AmzTb29tjzZo1Jrx8IiIiIiIiKk1MWnjqyy+/RLVq1Qp9JLdChQoYMGAALl68iAYNGph0AYiIiIiIiKj0MGmfXHt7e5w/fx6JMvdMCIKA6tWr60ZeX331Vfz0009G9aNQKKBSqWBraws3NzdYWVl0e18iIqIyRQAQByAZgBMADwDmW0mDiIiocJmcLZYrVw7lypUrsJ6DgwOqVatmandERERkJs8BrASwEMCdHOV+AMYBGAHArdCjIiIiMo3F98mVm7pMRERERWs3gCoAJgCIzPVc5H/lVf6rR0REVJJYdN7v8uXLdf/38fGxZFdERESkp90AukM7TVnuY+jsstT/6oVlZaFLIcVGRERkKosmuSNGjLBk80RERGSg54KAftAmspoC6mqgnfLVLzUV0c+fw83NzdLhERERmczi05WJiIio+FiZmYkUFJzgZtMASAGwatUqywVFRERkRkxyiYiIyghBELAwI8OocxcsWMA1NoiIqEQwarqy3Ke5w4cP16ueJcj1TURERGJxcXG4Y0SiKgC4c+cO4uPj4eHhYf7AiIiIzEghGPGxrFKp1O1/m02tVutVzxLk+qaSzdbWFhkyow02NjZIT08vgoiIiEq+u3fvwtfX1+jzo6KiyvZCki4uQFKS7tAWgNy4uA0A3V8qZ2cgMdHysRVnvG5EZCJDcwOTFp7Kzo8LSmQtOb2pMJJoIiKi0sDJycmk852dnc0UCRERkeWYlOQqFAq9ElhLJaK8N4iIiEh/Hh4e8FMoECkIslsH5UUBoLqfH9zd3S0VGhERkdkYvfCUIAh6JZnZ9SzxICIiIv0pFAqMs7Ex6twPPviAs6eIiKhEMGokV6PRb+MBfesRERFR4RhhbY0p6elIhX7bCCkB2IOLPBIRUcnBLYSIiIjKEDeFApugnYJc0JsA5X/1Ntvbw83NzdKhERERmQWTXCIiojKmC4AwaEdo82MPYCeAzlYmLeFBRERUqPhXi4iIqAzqAiAagCcAuY34VAAeAHAtzKCIiIjMgCO5REREZZQbtMmsHBWY4BIRUcnEJJeIiIiIiIhKDaOmK9+/f9/ccZjkpZdeKuoQiIiIiIiIqBgwKsn18fEpNnvlKRQKZGVlFXUYREREREREVAwYvfCUIAjmjIOIiIiIiIjIZEYnucVhJJeJNhEREREREeXEkVwiIiIiIiIqNYxKcsPDw80dBxEREREREZHJjEpyg4ODzR0HERERERERkcm4Ty4RERERERGVGkxyiYiIiIiIqNQweuGpsiAiIgKrVq3C0aNHcevWLTx79gwqlQre3t4IDAzEq6++ipCQELi6uhZ1qCJZWVlo0KABrl+/DkB7D3W7du2MauvgwYNYtGiRyTGNGDECPXv2NLkdIiIiIiKi/DDJlREbG4uxY8di48aNss/fvXsXd+/exfbt2/Hpp5/iyy+/xMSJE6FUFo+B8Tlz5ugSXFPt2rULmzZtMrmd5s2bM8klIiIiIiKLMyrJvX//vqTspZde0queJcj1bazLly+jc+fOiI2N1at+UlISPvnkE4SHh2Pjxo2wt7c3WyzG2LdvH6ZPn2629i5cuGC2toiIiIiIiCzNqCTXx8cHCoVCd6xQKJCVlVVgPUvIq29jREZGon379oiPj5c8V69ePbz00ktISEjAtWvX8Pz5c9HzO3fuxMCBA7Ft2zaLv+a8nDt3Dv369YNarTZbm5cuXTJbW0RERERERJZm9PxaQRBED33rWeJhDllZWejfv78kwe3duzdu3bqFK1euICwsDEePHsXDhw+xdOlSyb24O3bswPz5880Sj6GOHz+OV155BYmJiWZrMyYmBo8fPxaVRUdHG/U1+vjjj80WFxERERERUV6MTnIVCoVeI5bZ9SzxMKfFixdLpuZOmDABW7ZsQY0aNUTldnZ2ePPNN3Hu3DlUrFhR9NzMmTORkJBg1tgKsnjxYnTo0MHs/ea+Hl5eXqhcubJZ+yAiIiIiIjInk0dy9a1XXEdwASA9PR0zZ84UlbVt2xbff/99vuf5+flhx44dsLa21pXFx8cXeJ65JCcnIyQkBO+99x7S09PN3v7FixdFx40aNTJ7H0REREREROZk1D254eHhZq1X1DZt2oQnT56IyubMmaPXaHHjxo3xzjvvYOHChbqyJUuWYPr06RZbbVkQBKxfvx6TJ09GVFSURfoApCO5THKJiIiIiKi4MyrJDQ4ONmu9orZu3TrRcb169dCiRQu9z3/vvfdESe7jx49x+PBho/emzc+RI0fw8ccf4/Tp05Ln3NzcMHfuXIwZM8YsfXEkl4iIiIiISprisbFrEcrMzJSMOBu6n2udOnUk9+2aY29ZOT179pRNcIOCgnDq1Cl07tzZLP0kJSUhMjJSVMYkl4iIiIiIirsyn+RevHgRycnJorLWrVsb3E7Lli1FxwcPHjQlLL3Z2dlh9uzZOHXqFGrVqmW2di9evCi679nJyUmSyBMRERERERU3Rk1XLk2uXbsmKWvQoIHB7QQGBoqOr1+/jtTUVNjb2xsdW36USiVCQkLw9ddfo1q1amZvP/f9uA0aNLDYPcZERERERETmUuRJ7tOnTxEZGYm4uDgkJCTAwcEB5cqVg7u7O2rXrg0rK8uGGBERITp2cHAwapuc3KOcGo0GUVFRqFu3rknx5WZnZ4devXrh448/Rv369c3adk553Y8bFxeH0NBQHDhwABcuXMCTJ0+gUChQoUIF1KpVC926dUOfPn241RARERERERWJIklyjx07hhUrVuDIkSO4detWnvVsbW0RFBSEdu3aYfTo0ahatarZY4mJiREdG5uc5d4vFwDu3btn9iT3+vXrcHd3N2ubcnInuS+99BLGjRuH3377TXa7ojt37uDOnTvYtWsXPvnkE4wbNw5TpkyBq6urxWMlIiIiIiLKVqjzT3fv3o369eujbdu2+P333/HPP//kuw9uWloajh8/jm+++QZ+fn4YPHgw/v33X7PG9OjRI9Gxt7e3Ue14eXlJyp4+fWpUW/kpjAQ3MzNTMo178uTJWLRokV778aalpeHbb79Fs2bNcPv2bUuFSUREREREJFEoSW5GRgZGjBiBbt264dq1a7okVqFQFPgAtPvCZmVlYcOGDWjYsCE2b95sttji4+NFxy4uLka14+zsLCl79uyZUW0VtevXryMjI0NUplardf+3traGv78/unbtio4dO6JOnTqy7dy8eRPNmjXDzZs3LRovERERERFRNosnuRkZGejduzf++OMPSXKb3yhuzkfO+s+ePcOAAQOwfPlys8SXe2TSwcHBqHbkzktLSzOqraKWe9GpbB4eHpg3bx5iYmJw/fp17Nq1C3v37kVERAQePHiAzz//XHId4uPj0bt3byQmJurVd3p6ut51iYiIiIiIcrP4PbkTJkzA33//LRmZtba2RpcuXdC8eXPUr18fnp6ecHV1hUajQUJCAmJjY3H+/HkcOnQIR48eBQDR+WPGjIG3tze6detmUny5k1xjF7pSqVSSsszMTKPaKmq578cFgObNm2P9+vV53hddqVIlzJo1C4MGDUL37t0RHR2te+7GjRuYPn06/u///q/AvmfPno2vvvrK6NiJiIiIiKhss2iSe+nSJSxZskSXnALarW/Gjx+Pzz77DJ6envme36dPHwDArVu38Omnn2Lr1q26ZDkrKwtvv/02bt68CScnJ6NjzDkNF5BPVvUhd55GozGqraLm7OyMgIAAREVFISUlBTVr1sSuXbvg5uZW4Ln169dHWFgYmjdvjtTUVF354sWL8fHHH6NSpUr5nj958mRMnDgRXl5ekinTREREREREBbHodOXZs2frEj1BEGBvb4+///4b3333XYEJbk41a9bE5s2bsWjRIlH5o0ePMGfOHJNitLa2Fh1nZWUZ1Y7cqK2tra1RbRW1mTNn4urVq3jx4gUePnyI48eP65XgZqtfvz4mTZokKktLS0NoaGiB59ra2hp9XzQREREREZHFkty0tDSEhYXp7qVVKBRYtmwZXnnlFaPbfO+99zBz5kxde4IgYOXKlSbFmTsRNXb0sDQluTlVqFDBoA8kso0bN04y9XvPnj3mCouIiIiIiEiWxZLcY8eO4cWLFwC099IGBwdj0KBBJrf72WefISAgQHccExODM2fOGN1e7n1ck5OTjWonKSlJUubo6GhUW6WBh4cHGjduLCo7ffp0EUVDRERERERlhcWS3Oz9bAVBAAAMHTrULO0qlUq88cYbunYB4J9//jG6PQ8PD9Hx8+fPjWpH7jxj99wtLerXry86TkhI0GufXSIiIiIiImNZLMmNjY0VHfv7+5ut7ewRwuwFrR4+fGh0W7kXQsodt77kzivrSW7uDxAAIC4urggiISIiIiKissJiqyuXK1dOdKxUmi+fzr0Xq52dndFt+fn5iY5jYmKQlZVl8FZC9+7dk5RVr17d6LhKg9wrVwNlewo3ERERkSkEQUBcXBySk5Ph5OQEDw8P0S4mRKRlsZHcl156SXR848YNs7V9//59AP+bCp3X3q36yHl/L6BdXTkyMtLgdm7evCk6Ll++vFELNhU3xq42DUhHba2srCT3QBMRERFR/p4/f4758+ejZs2a8PLygq+vL7y8vFCzZk3Mnz/f6NvtiEoriyW5wcHBcHJy0n26tHbtWrO1vX37dt3/rays0KJFC6PbatKkiaTs7NmzBreT+5zciy6VFKGhoWjbti3q1KkDd3d32NjY4Pr160a1dfnyZdFx7dq1zREiERERUZmxe/duVKlSBRMmTJAMxERGRmLChAmoUqUKdu/eXUQREhU/Fkty7e3tMWjQIAiCAEEQsHfvXuzcudPkdm/duoU///wTCoUCCoUCXbt2Rfny5Y1uz9PTE/Xq1ROV7d+/36A2UlJScPz4cVFZx44djY6pKGk0Ghw5cgQ3b97Es2fPIAiC5LXpIz4+HhcvXhSVtWnTxkxREhEREZV+u3fvRvfu3ZGamqp7T51Tdllqaiq6d+/ORJfoPxZLcgFg9uzZ8PT01O1pO3ToUJw/f97o9p4/f44+ffogPT0dgiDA3t4ec+bMMTnO7t27i463bt2KtLQ0vc/fsmWLpH63bt1MjqsoBAUFScrWrVtncDuLFy+W3JPbs2dPo+MiIiIiKkueP3+Ofv36QRAEaDSafOtqNBoIgoB+/fpx6jIRLJzkenp64o8//oCtrS0UCgWeP3+Odu3a4ZdffjG4rTNnzqBx48aIiIgAoF1ZeeHChWZZtXn48OGi4/j4eCxevFivc7OysjB79mxRWatWrcy6mnRh8vf3R2BgoKhs//79OHnypN5t3L9/H999952orEaNGnj11VfNEiMRERFRabdy5UqkpKQUmOBm02g0SElJwapVqywcGVHxpxByz3vQw+HDhw2qv3//fsycOVM3oqtQKODj44NRo0ahXbt2aNSokWTV3bS0NERGRuLEiRPYunUrdu3apfshd3R0xKpVq9CnTx9DQ89Tp06dsG/fPt2xnZ0dDhw4UOD9vu+++64kad+0aRP69u1rttgMcffuXfj6+orKwsPD0a5dO73bWLRoEcaNGycq8/f3x/Hjx+Hm5pbvuQkJCejcuTNOnz4tKl+1ahWGDRumdwy2trbIyMiQlNvY2HCvXSIiU7i4AElJukNbANLftoANAN1vW2dnIDHR8rEVd7x2xuF1M5ggCKhZsyYiIyMlU5Tzo1AoUL16ddy6dYurLlOpYmhuYFSSq1QqDf7ByU5us/8PQNSGnZ0dXF1dodFokJqaiuTk5DzPt7a21m0jpFAozLL36tmzZ9GsWTPRp2Xu7u5Ys2YNunbtKqmfkZGBjz76CIsWLRKVt2zZEseOHcu3r3bt2uHQoUOiMkMT0byYI8nNyspCw4YNce3aNVF5w4YNsWHDBtSoUUP2vCtXrmDo0KGSBae6deuGsLAwvfsHmOQSEVkMEw7j8doZh9fNYE+fPoWXl5dJ53t4eJgxIqKiZWhuYNI+uYbmx9mJau5kFwBSU1ORmpqa57k5z8nMzNTdb2CuT6maNGmCSZMmie7xjY+PR7du3dCjRw8MGTIEfn5+ePHiBc6dO4clS5bg9u3bojZcXFywcuVKs8RTlKysrLBy5Uq0a9dO9GHDxYsXUbduXYSEhKB79+7w9fVFRkYGIiMjsX37dmzevFmy5ZCPjw9+//33wn4JRERERCVTXByS33jDpCaS3ngDHsuXA+7uZgqKqGQxKck1NcE05vzsc7KnPpvTrFmz8OjRI6xYsUJXJggCtm/fLtq2SI6dnR3Wr1+f5yhnSRMUFITNmzejd+/eSElJ0ZVnZmZi5cqVeiXzvr6+2LNnD7y9vS0ZKhEREVHpcPky0KkTnJ4+NakZ5x07AH9/YN8+INdaK0RlgdELT2UvWV6UD3NTKpVYtmwZPv30U1hZ6Z//Z+9N1qVLF7PHVJQ6deqEM2fOSBai0kfv3r1x+vTpUpP0ExEREVnU5ctAmzZAXBw8NBr4ATB0OEgBwA+Au0YDxMUBrVsDV66YP1aiYs6okdyoqChzx1FsKJVKzJkzB6+//jpmzJiBnTt3ikYyc/L29sbo0aPx0UcfwdXVtZAjLRx169bFhQsXsH79esyfPx9nzpzJc5U/a2trdO3aFR9++CE6dOhQyJESERERlVBxcUCnTsCLF4BaDQWAcQAmGNHUB/gvOVarte117AhERHDqMpUpRi08VZakpqbi6NGjiI6ORmxsLKysrODp6YlGjRohMDAQSqVFd2Eqdp49e4YTJ07gwYMHiIuLg0ajgbu7O2rVqoWXX34ZTk5OZumHC08REVkIFwEyHq+dcXjdChYSAqxfr01M//McQBUAqQD02URICcAeQDQAt5xPqFTAoEHAmjXmipao0BXK6spElsYkl4jIQphwGI/Xzji8bvkLCwN69JB9ajeA7gAE5J/oKqEdvd0JoHN+/XTrZnycREXI0NygbA1DEhEREREVJ7NnA3nMDOwCIAzaEdr82KOABFel0vZDVEYwySUiIiIiKgpXrwLHjgF5rHcCaBPdaACqPJ5XAXiAfBJcQDsN+uhR4No1YyMlKlFKfJIbFhZW1CEQERERERkuNBTQY0cPN+Sf5Oq1/KmVlbY/ojLApH1yjZWUlITk5GRkZGRAo9Hkux2QRqNBVlYWMjIykJqaisTERDx69AhnzpzBrl27EBkZCXWOm/SJiIiIiEqEU6eArKzC6Uut1vZHVAYUWpIbFhaG5cuXY+/evUhOTjZLm4IgQKEwdAcxIiIiIqIiJgjA2bOF29+ZM9p/+f6ZSjmLJ7kpKSl4/fXXsW3bNgDId9SWiIiIiKhMSEoq/BWkExOB5GTt6tVEpZjFk9zhw4fjr7/+0h2bc+SVCTMRERERlUgy26GU6n6JCpFFk9z9+/dj8+bNksTW0OQ05/mCIEClUqF69epo2rQphgwZYpZYiYiIiIgKjY1N2eqXqBBZNMmdP3++6FgQBHh4eKB///6oW7cunJ2dsXfvXqxduxYAYGdnh59++gkKhQKpqal4/Pgxrly5gr179yIpKUmX7NrY2GDdunVo1KiRJcMnIiIiIrIMZ2fAxaVwpyy7uABOToXXH1ERsViSm5qair1790KhUOgWiOrQoQO2bNkC5xz3AdSvX1+X5Kanp6NGjRpo06aNqK2UlBTMmDED3377rS4B7t+/Py5dugQn/qASERERUUmjUABNmgAHDhRef02bctEpKhMstk/uxYsXkZ6erjt2dHTEmjVrRAkuADRq1AjOzs66Udpdu3ZJ2nJwcMCcOXOwYsUKANrpy3fv3sWkSZMsFT4RERERkWU1a6bXPrlmoVJp+yMqAyyW5N65c0f3f4VCgYEDB8Lb21tST6FQoGnTprr7dA8dOpRnm8OGDcPYsWMhCAIEQcBvv/2GGzdumD94IiIiIiJLCwkpvH1ys7K0/RGVARZLch8/fgzgf4tMBQcH51k3MDBQV/fixYvQaDR51v3qq690I78ajQYLFiwwY9RERERERIWkXj2gVStAabG35FoqFdC6NRAQYNl+iIoJi/1Epaamio79/PzyrBuQ4wcuLS0NN2/ezLOum5sb+vXrpxvN3b59u+nBEhEREREVhcmTgXwGeMxCrdb2Q1RGWCzJtbOzEx3nvhc3pxo1aoiOr1+/nm/bHTp00P0/JiYm36SYiIiIiKjY6t4dGDJEO9pqCSqVdppyt26WaZ+oGLJYkuvu7i46zj2ym1P16tUB/G8/3IKS1txJ8ZUrV4wJkYiIiIio6C1cCHh4mD/RVam07S5caN52iYo5iyW5Hh4eouOYmJg861apUgXW1ta644JGch0cHAD8Lyl+8uSJsWESERERERUtDw9g3z7A0dF8ia5KpW1v3z4g1+ATUWlnsSS3Vq1aAP6XiJ4+fTrvIJRK+Pr6AtAuPnXhwoV8205ISBAdP3/+3IRIiYiIiIiKWGAgcPSoeUZ0s0dwjx7VtktUxlgsya1Tpw7Kly8PQJu4hoaGIiMjI9/62Ssx37hxQ7c6s5xLly7p2gW0e/ASEREREZVogYFARAQwaJBp7QwerG2HCS6VURZdr7xdu3a6RPTff//V7XErp2HDhqLjpUuX5tnuypUrRcdeXl6mBUpEREREVBy4uwNr1gD29oafq1QCYWHAH39wijKVaRZNcocPHw5AO2VZEAQsW7YMbdq0wcGDByV1u3btKqo7e/ZsHDt2TFLv888/x7lz53TToAGgcePGlnkBRERERERFwcrK8HMcHbmKMhEAhZDX0KqZNGvWDGfPngWgnV6cnZxWr14dt27dEtWtU6eOrkwQBFhbW2PgwIFo0aIFUlNTsXHjRtG9vYIgoFq1aoiKirLkS6AiYGtrKzu93cbGBunp6UUQERFRKeHiAiQl6Q5tAcjdTGQDQPfb1tkZSEy0fGzFHa+dcXjdjMPrRqRjaG5gxEdEhvn999/RokULvHjxQjdKCwAqmRvqp0+fjpCQECgUCigUCmRmZiI0NBShoaG6OtmJcva/7733nqVfAhEREREREZUQFp2uDAABAQHYtWsXPD09dYmpQqHQ7Y2b0+DBg9GrVy9dIpydzOZ85JymXL9+fXz44YeWfglERERERERUQlg8yQWAVq1a4erVqxgzZgxsbW0hCIJskgsAa9euRefOnUWJbs4HoB3NrV27NrZt2ybaX5eIiIiIiIjKtkJJcgHtCsiLFy/Go0ePsHr1avTp00e2nr29Pf7++28sWrQI1atXl4zkOjk54aOPPsKpU6dQtWrVwgqfiIiIiIiISgCLLzxlqitXriAqKgrp6emoXLkymjZtytHbMoALTxERWQgXszEer51xeN2Mw+tGpFPsFp4yVWBgIAK5kTURERERERHpodCmKxMRERERERFZGpNcIiIiIiIiKjWKbLrygwcPcOTIERw7dgx37txBXFwcEhIS4ODggHLlysHd3R3169dHy5Yt0bx5czg6OhZVqERERERERFRCFHqSu3nzZixevBgHDhwQledc/yp7q6DNmzcDAOzs7DB06FB88MEHCAgIKLxgiYiIiIiIqEQptOnKN27cQKtWrTBgwAAcOHBAsjWQ3F642Y/U1FQsXboUDRo0wCeffIKsrKzCCpuIiIiIiIhKkEJJcnfv3o3GjRvj5MmTeiW1uZ9XKBQQBAEajQb/93//hxYtWiAuLq4wQiciIiIiIqISxOLTlQ8fPow+ffogLS0NAERJLaCdily3bl14enrC1dUVGo0GCQkJiI2NRUREhG7UNud5586dQ/fu3bF//37eq0tEREREREQ6Fk1yMzIy8NZbbyEtLU2UpLq4uGDUqFEYNmwYGjZsCKVSfkA5PT0dx44dw7Jly7Bhwwao1WrdqO6ZM2cwZswY/PHHH5Z8CURERERERFSCWHS68sKFC3H79m1dYioIAjp16oTr16/jhx9+QOPGjfNMcAHA1tYWHTp0wJo1a3Dy5EnUrl1bN5VZEASsXbsWhw4dsuRLICIiIiIiohLEoknuihUrdAmpQqFA165dsWPHDlSqVMngtho3bozDhw/rVlfObnfWrFnmDpuIiIiIiIhKKIsluf/88w+uXbumOy5XrhxWrVoFa2tro9v09PTE+vXrRW0cPHiQi1ARERERERERAAsmuVeuXNH9X6FQYOTIkfD09DS5XX9/fwwZMkS3cJVarcbx48dNbpeIiIiIiIhKPosluQ8ePADwv1WUO3bsaLa2X3vtNdm+iIiIiIiIqGyzWJKbmZkpOvb29jZb21WrVgXwv22FEhMTzdY2ERERERERlVwWS3IrV64sOn7y5InZ2n7+/DmA/40SV6xY0WxtExERERERUcllsSS3QYMGAP432nrgwAGztZ3zfl8AqFmzptnaJiIiIiIiopLLYkmuv7+/LtEVBAErVqzQjcCa6rffftMlzy+99BKaN29ulnaJiIiIiIioZLPoPrlTpkzR7ZH75MkTjBkzxuQ2v/76a0RERADQjhKPHTvW5DaJiIiIiIiodLBoktu/f38MGDAAgiBAEARs3LgRw4YNQ0pKilHt/fjjj5g+fToUCgUEQUCbNm0wceJEM0dNREREREREJZVFk1wAWL16NXr06AFAO205NDQUgYGBWLVqFdLS0vRq49y5c+jZsyc++ugjaDQaCIKA5s2bY+PGjbppy0RERERERERWxpzUoUMHg+pnbyeUPQIbFRWFUaNGYdy4cWjatCkaNWqE8uXLw9XVFRqNBqmpqYiNjUVkZCROnDiBmJgYAP9bTblcuXLo3bs3QkNDAQAffPCBMS+DiIiIiIiIShmFkJ05GkCpVBo8gprdTfZ5uY8LOi+/umq12qBYqPiztbVFRkaGpNzGxgbp6elFEBERUSnh4gIkJekObQFIf9sCNgB0v22dnQHuSc9rZyxeN+PwuhHpGJobGDWSa4zcCWrO47zybIVCkWdiq2+STERERERERGWH0UmuEQPAxbIPIiIiIiIiKj2MSnJHjBhh7jiIiIiIiIiITGZUkrt8+XJzx0FERERERERkMotvIURERERERERUWJjkEhERERERUanBJJeIiIiIiIhKjULbQigvarUajx8/Rnx8POLj42FlZQUHBwd4e3ujQoUKRR0eERERERERlSBFkuT++++/WL58OQ4dOoSTJ08iLS1Ntp6dnR0aNGiA9u3bY8iQIahXr14hR0pEREREREQliUIoxM1oHzx4gClTpmDt2rXIysoCUPBeuAqFQvf/Tp06YeHChahZs6ZF46SiZ2tri4yMDEm5jY0N0tPTiyAiIqJSwsUFSErSHdoCkP62BWwA6H7bOjsDiYmWj62447UzDq+bcXjdiHQMzQ0K7Z7c/fv3o3Hjxli9ejUyMzMhCAIEQYBCocj3AUBXd8+ePWjQoAHWrl1bWGETERERERFRCVIo05W3bNmCgQMHQq1WAxCPzuozkpsz2U1LS8PQoUORnp6OkSNHWixmIiIiIiIiKnksnuReuHABw4YNg1qtFiWrAODr64vg4GA0adIE5cuXh6urK7KyspCQkICHDx/i3LlzOHz4MKKjoyXJ7pgxY1CvXj00adLE0i+BiIiIiIiISgiLJ7mjRo1CSkqKKEFt1KgR5syZg06dOhV4viAI2LVrF6ZMmYJLly7pkt3MzEy89dZbuHDhgmhkmIiIiIiIiMoui96TGxoaisuXL0OhUOhGb8eMGYNTp07pleAC2unK3bp1w5kzZzBmzBjR9OYrV65g48aNFomdiIiIiIiISh6LJrm//PILAOgWmBo4cCAWL14MKyvDB5CtrKywePFiDBw4UNceACxevNisMecUERGByZMno02bNqhQoQJsbW3h4OAAX19f9OrVC4sXL0ZCQoLF+jdWVlYWAgICdKPeBw8eNEu7SUlJWLx4Mfr16wdfX184OzvDxsYGXl5eaNmyJSZPnowrV66YpS8iIiIiIiJjWGwLoYSEBHh6ekKj0UAQBJQrVw63bt2Cu7u7Se3GxcWhVq1aeP78OQRBgJWVFR4/fgw3NzfzBA4gNjYWY8eO1WuU2NnZGV9++SUmTpwIpbLQFqvO19dff42pU6fqjsPDw9GuXTuj2xMEAQsXLsTUqVORqMey9H369MHChQtRuXJlo/vkFkJERBbCbUmMx2tnHF434/C6EekUmy2ETpw4IVpNefDgwSYnuADg4eGBkJAQ3bRltVqNs2fPmtxutsuXL6NBgwZ6T4NOSkrCJ598gp49eyI1NdVscRhr3759mD59utnaS09PR58+fTB+/Hi9ElxAu5p248aN8f/t3XlcVFX/B/DPMMMui6xqqCBiLuCCmhpmWCoFWpqWS1qm5mOWlbY92lNaWvpUVqZllpaaqZnmikpqmqK4objvuIQoyiYgO3N/f/CDhzt3GGYus8DM5/168apz5ixfroPynXPuuUeOHDFaHERERERERPowWZJ769YtAP87SVnfe3D10adPH1H50qVLRhk3OTkZvXv3RlpamuS10NBQREdHIyIiQuuq8datWyu3UltKYmIiBg8eXPnhQm0JgoBhw4Zh48aNktf8/f0RGRmJqKgoBAcHS16/c+cOoqKicPHiRaPEQkREREREpA+TJbl3794VlQMCAow2dsU22Ir7co1xX2xpaSmGDBmCzMxMUf3AgQNx6dIlnDp1CrGxsYiPj8etW7ewePFieHh4iNpu2bIF8+bNq3Uschw4cACPP/643qut+vjyyy+xYcMGUV3Tpk2xceNGpKamYvfu3di+fTsuX76Mw4cPo0ePHqK2WVlZGDZsGNRqtdFiIiIiIiIi0sVkSa7m4VLa9lDLpTmWo6NjrcdcuHAhjh8/LqqbPHky1q9fj5YtW4rqnZycMHbsWCQmJqJx48ai12bOnGn2w6gWLlyIxx57zKjz3rp1C9OnTxfVhYSE4NixY3jqqack9x937doVe/fuxYgRI0T1x48fx6+//mq0uIiIiIiIiHQxWZLr4+MjKicnJxtt7IqxKrYG+/n51Wq8oqIizJw5U1TXq1cvzJ07V2e/4OBgbNmyBfb29pV1mZmZNfYzlry8PIwYMQITJ040+mFMc+bMwf379yvL9vb22Lhxo+TPtSqVSoWff/5ZsqI7Y8YMlJSUGDU+IiIiIiIibUyW5FasflZsKd60aZPRxtYcq2nTprUab926dZLt1XPmzKmMXZfw8HBMmDBBVLdo0SKTbtEVBAG//fYb2rdvj1WrVhl9/Pz8fCxfvlxU99JLL6FNmzY19nVwcMCCBQtEdcnJyYiLizNqjERERERERNqYLMl96KGH4OLiAqA8KduwYQPOnj1b63HPnDmDDRs2VCagLi4ukpVDQ61evVpUDg0NNWjMiRMnisp37tzB3r17axVTdfbt24fu3btj2LBhuHr1qug1T09PLFq0qNZzbN++HdnZ2aK68ePH690/PDwc3bp1E9Xpe1o1ERERERFRbZj0ntyoqCgIggCFQoHS0lKMGjUKuVWe92WonJwcjBo1CqWlpZXj9u7dW7Rd2FAlJSXYvXu3qG7AgAEGjdG6dWvJfbvr1q2THZMuAwYMwOHDhyX1nTt3xqFDh9CvX79az6G56tqkSRN07tzZoDE0r+GmTZu4ZZmIiIiIiEzOZEkuALz99tuiclJSEqKionDjxg2Dx7p+/TqioqKQlJQk2kb81ltv1SrGpKQk5OXliep69uxp8DgPP/ywqLxnz57ahKU3JycnzJ49G4cOHUKrVq2MMmZ8fLyoHBERYfAYmtcjKysLJ0+erFVcRERERERENTFpktujRw889dRTlauugiDg4MGDaN++Pd5//329DqO6cuUKpk6dig4dOuDw4cOV4ygUCvTt2xePPvporWI8c+aMpK5Dhw4GjxMWFiYqnz17FgUFBbLjqomdnR1GjhyJ8+fP49///jeUSqVRxi0pKZE8d9gY1wMof44vERERERGRKalqblI7S5YsQVhYGNLS0ioT1JycHMyZMwdz5sxBQEAAwsPD0ahRI3h4eFS+fvv2bSQmJuLmzZsA/neScsUqbpMmTfDzzz/XOr5z586Jyi4uLpXP4TWE5nZltVqNq1evom3btrWKT5OTkxOeeuopvP3222jfvr1RxwaAy5cvS7YVy1kh9vHxgYeHh+ixRpcvX651fERERERERLqYPMn19vbGn3/+iSeffBKpqamVSWpF0vrPP/8gJSVFa9+KNgBE/Ro2bIhNmzZJnlErR2pqqqgsJ8EFoDWW69evGz3JPXv2LLy8vIw6ZlWa1wOo3TWpmuRev35ddlxERERERET6MOl25QqhoaE4cOAAOnToIFqRrfgSBEHrl7Y2Xbt2xbFjx9CpUyejxHb79m1R2d/fX9Y4vr6+krr09HRZY+liygQXkF4PwHjXxBTXg4iIiIiIqCqzJLlA+bNsExMTsWLFCrRs2VKUzALipFdb8tumTRv8+OOPiI+PR/PmzY0WV2Zmpqjs7u4uaxw3NzdJXVZWlqyxLEnzegDGuyb18XoQEREREVH9YvLtylUpFAqMGDECw4cPR1JSEv766y/8/fff+Oeff5CRkYGMjIzK7cgNGzZEcHAwIiIi0KtXL3Tv3t0kMRUVFYnKFc/2NZS2foWFhbLGsiTN6wEY75rUx+tBRERERET1i1mT3AoKhQKdOnVCp06dav0IoNrSTOpUKnmXRNvpxvXxubDaklxjXRN9rkdRUZHWGIiIiIiIiPRh0u3Kv/zyC1q2bIlp06YhKSnJlFPJVlZWJirLfRSPtn5qtVrWWJakeT0A410Tfa7H7Nmz4eHhgeLiYllzEhERERGRbTNpkjtr1iwkJyfjv//9Lzp37owHH3wQx44dM+WUBrO3txeVS0tLZY2jbZXS0dFR1liWpHk9AONdE32ux9SpU3Hv3j04ODjImpOIiIiIiGybyZLcxMREXLp0SXSAVHp6Otq0aWOqKWXRTLzkriBaS5KrLWZjXRN9roejo6Psg66IiIiIiIhMluQeOXJEVFYoFHj88cfh7Oxsqill8fDwEJXz8vJkjZObmyupc3V1lTWWJWleD8B416Q+Xg8iIiIiIqpfTJbk5uTkSOqCgoJMNZ1s3t7eonJ2drascbT1k/t8WUvSvB6A8a5JfbweRERERERUv5gsyW3ZsqWkLi0tzVTTydakSRNRWW6M2vrVx6RO83oAxrsm9fF6EBERERFR/WKyJPeJJ55A48aNAaDyvty4uDgUFBSYakpZgoODReXU1FRZBy1dv35dUteiRQvZcVmK5vUAgBs3bhg8TklJCW7duiWqq4/Xg4iIiIiI6heTJbkuLi747rvvYGdXPoVCocCdO3fw5ptvmmpKWdq1aycql5aWIjk52eBxLly4ICr7+fnBx8enVrFZgre3t2TFVfN708fly5cljyPSvNZERERERETGZtJHCD399NPYvn07GjVqVHnC8uLFixETE4OjR4+acmq9denSRVInJzbNPuHh4bJjsrSuXbuKysa4HgDQqVMn2TERERERERHpQ2XqCR5//HGcP38eM2fOxIIFC1BYWIjt27dj+/bt8PHxQY8ePdCuXTt4eXmhYcOGUKkMD+mFF16QHZ+Pjw9CQ0Nx+vTpyrpdu3ZhxIgReo+Rn5+PAwcOiOr69OkjOyZLi4yMxJYtWyrL+/fvR2FhIZycnPQeY8eOHaJyaGgoGjVqZLQYiYiIiIiItDFpkuvl5SUqq9XqyvtzAeDu3bvYvHkzNm/eXKt5apPkAkBMTIwoyd2wYQO+/fZbvZO69evXo7CwUFQXHR1dq5gsKSYmBm+//XZlOT8/H5s3b8azzz6rV//79+9j06ZNkjGJiIiIiIhMzaTblbOzs0VfJSUlEAQBCoWi8qtiG7PcL2PQTJIzMzOxcOFCvfqWlpZi9uzZorqIiAi0adPGKLFZQuvWrSVblmfPng21Wq1X//nz5+PevXuVZYVCgbFjxxo1RiIiIiIiIm1MmuQCECW0FeXqXjf0y1jatm0r2V48bdo0JCQk1Nh30qRJOHPmjKhuypQpRovNUt544w1R+fjx43p9X3v37sX06dNFdf3790dISIhR4yMiIiIiItLG5ElubVdqTb2KW2H27NmVJ0EDQGFhIfr374/t27drbV9cXIxJkybh+++/F9U//PDDeOaZZ3TOFRkZKUnY9+zZU+vvwZiGDx+ODh06iOrmzZuHyZMno6SkRGuf2NhYPP300yguLq6sU6lUmDNnjkljJSIiIiIiqmDSe3L13d5aF3Tp0gXvvvuuKCHLzMxEdHQ0+vfvj+HDhyM4OBj3799HYmIiFi1ahMuXL4vGcHd3x7Jly8wduknY2dlh2bJl6N69u+h+46+//hqxsbEYP348OnfuDFdXV1y5cgUrV65EbGys5MOHTz75BG3btjV3+EREREREZKNMfrpyffLJJ5/g9u3bWLp0aWWdIAh6HY7l5OSENWvWoGXLliaO0nw6dOiAP/74A4MGDUJRUVFl/aVLl/DOO+/U2H/MmDF6tSMiIiIiIjIWk29Xrk/s7OywZMkSvPfeewY9yiggIABxcXGIiooyYXSW8eSTTyI2NhZNmzbVu49SqcT777+PxYsXG/XeaSIiIiIiopowydVgZ2eHOXPm4NixYxgyZAhcXFyqbevv748PPvgAp0+fRq9evcwYpXk9/vjjOHfuHD744AM0b9682nYqlQpDhgzBoUOHMGvWLCa4RERERERkdgrB2Cc46amoqAgHDx7EoUOHcOnSJaSlpeH+/ftQqVRwc3NDs2bN0Lp1a/Tq1QutW7e2RIgAgIKCAsTHxyMlJQVpaWlQqVTw8fFBp06dEBYWJjqsylYkJSXh/PnzuH37NgoKCuDp6YmWLVuie/fucHNzM8ocjo6OogOsKjg4OIi2ThMRkYHc3YHc3MqiIwDp37aAA4DKv23d3ICcHNPHVtfx2snD6yYPrxtRJUNzA7Pfk3v06FHMnz8f69evx/379/Xq07x5c7z00kt45ZVX4OPjY+IIxZydndG3b1+zzlnXdezYER07drR0GERERERERBJmW4a8c+cOnnnmGXTr1g0rVqxAXl5etY8E0qy/du0aZsyYgeDgYHz22WfmCpmIiIiIiIjqGbMkuceOHUNYWBg2btxYmbhqPidWoVDU+Fpubi6mTp2Kvn37Ii8vzxyhExERERERUT1i8u3KFy5cwGOPPYac/78/oOIwoqort/7+/vDx8YGHhwdKS0tx79493LlzB1lZWZVtqvb766+/8OSTT+Kvv/6Cvb29qb8FIiIiIiIiqidMmuSWlZVhyJAhyMnJESWpSqUS0dHRePHFF9GzZ0/4+flp7X/jxg3Ex8dj6dKl2LVrFwBUruoeOHAA7777Lr766itTfgtERERERERUj5h0u/KiRYtw5swZ0Vbk1q1b48CBA9i4cSOeeeaZahNcAGjWrBlGjBiBP//8E7t27UJgYGDldmZBELBgwQKcPn3alN8CERERERER1SMmTXIXLFhQuYKrUCjQvn177Nu3D127djV4rMjISMTHxyM4OLiyTq1WY/bs2UaLl4iIiIiIiOo3kyW5Fy9exPnz5wGUb1F2cnLC77//Dm9vb9ljNm7cGGvWrIGdnV3laq4hjyIiIiIiIiIi62ayJDcxMbHy/xUKBUaOHImQkJBaj9upUyc8++yzlQdXFRUVISEhodbjEhERERERUf1nsiT39u3bAP53inL//v2NNvagQYNE5QsXLhhtbCIiIiIiIqq/THa6ckFBgaj8wAMPGG3swMBAAP97rFBubq7RxiYiovpLEARkZGQgLy8PDRo0gLe3d+W/FURERGQbTLaS6+XlJSpnZmYabezi4mJR2dfX12hjExFR/ZOdnY158+YhJCQEvr6+CAoKgq+vL0JCQjBv3jxkZ2dbOkQiIiIyE5MluaGhoQD+t9q6b98+o4196tQpAP/bCt2iRQujjU1ERPVLXFwcAgICMHnyZCQnJ4teS05OxuTJkxEQEIC4uDgLRUhERETmZLIkt0ePHvDx8QFQnowuWbLEaNuKly9fXvn/Pj4+6NWrl1HGJSKi+iUuLg4xMTEoKCiofB57VRV1BQUFiImJYaJLRERkA0yW5CqVSrz11lsQBAEKhQK3bt3CK6+8Uutxly1bhoMHD0KhUEChUODll1+GUqk0QsRERFSfZGdnY/DgwRAEAWq1WmdbtVoNQRAwePBgbl0mIiKyciZLcgHg7bffxsMPP1z5SfqqVaswduxYyT21+tq6dSv+9a9/VT4jNyQkBB988IGRoyYiovpg2bJlyM/PrzHBraBWq5Gfny/aDURERETWx6RJrlKpxKZNmxAeHg6gfNvY0qVL0bFjR2zZskXvX0xSU1MxadIkPPXUUyguLoYgCGjcuDE2bNgAR0dHU34LRERUBwmCgPnz58vq+80330i2NRMREZH1UAgm/Jf+wIEDAIC8vDy89dZbOHPmzP8mVijQqFEj9OnTB126dEGzZs3g4eEBBwcH5ObmIjMzE6dPn8ahQ4fw999/V241q+jbs2dPBAcH6x2LQqHAkiVLjPsNksk4OjpqXfF3cHBAUVGRBSIiorokPT29Vifrp6enw9vb24gR1SPu7kCVMzIcAWjbX+UAoPJvWzc3ICfH9LHVdbx28vC6ycPrRlTJ0NzApEmunZ2d6PmEFffnVp1Sn+cXVk1uq46jr4r2ZWVlevchy2KSS0S6XLt2DUFBQbL7X716tfKZ6zaHvzjLx2snD6+bPLxuRJUMzQ1U5ghKM0nVTHx1qThgSrNO39zckGSYiIjqhwYNGtSqv5ubm5EiISIiorrGpPfkaqo4gKrql5w+hiw+874rIiLr4+3tjeDgYIM/yFQoFAgODoaXl5eJIiMiIiJLM+lKbq9evbiSSkRERqdQKDBp0iRMnjzZ4L6vv/46/20iIiKyYia9J5dILt6TS0Q1yc7ORkBAAAry86HW458yOzs7ODs7IyUlBZ6enqYPsK7ifX7y8drJw+smD68bUSVDcwOzblcmIiIyFs/9+7GueXMoBKHGf8zsACjUavzRvDk8///kfyIiIrJOTHKJiKh+ycgARowA+vdH1PnziAXgXEMXZwBbAfQ7fx6IiQGefx7IzDR9rERERGR2THKJiKj+OHkSaNsWWLOmvKxWIwpACgBlNV2UAG4C6Pf/7QEAv/0GtGkDnDpl4oCJiIjI3JjkEhFR/XDyJPDII+UruRrPPfeE7iTXQ7OyrKx8nJ49megSERFZGSa5RERU92VkAH37AvfvSxJc2crKysfr04dbl4mIiKwIk1wiIqr7Jk3SuoJbaxUrupMmGXdcIiKqMwRBQHp6Oq5du4b09HTw4TLWj0kuERHVbbGxwKpVxk9wK5SVAStXAlu3mmZ8IiKyiOzsbMybNw8hISHw9fVFUFAQfH19ERISgnnz5iE7O9vSIZKJMMklIqK6bfZswM7E/1wpleXzEBGRVYiLi0NAQAAmT56M5ORk0WvJycmYPHkyAgICEBcXZ6EIyZSY5BIRUd11+jSwf///TkU2lbIyID4eOHPGtPMQEZHJxcXFISYmBgUFBRAEQbI9uaKuoKAAMTExTHStEJNcIiKqu1auBFQq88ylUpXPR0RE9VZ2djYGDx4MQRCgruEDUrVaDUEQMHjwYG5dtjJMcomIqO46dAgoLTXPXGVl5fMREVG9tWzZMuTn59eY4FZQq9XIz8/H8uXLTRwZmROTXCIiqpsEATh61LzzHTlS/l8iIqp3BEHA/PnzZfX95ptveOqyFWGSS0REdVNuLpCTY945c3KAvDzzzklEREaRkZGBK1euGJysCoKAK1euIJPPTLcaTHKJiKhuKi62rXmJiKhW8mr5IWVubq6RIiFLY5JLRER1k4ODbc1LRES10qBBg1r1d3NzM1IkZGlMcomIqG5ycwPc3c07p7s7UMtfkoiIyDK8vb0RHBwMhUJhUD+FQoHg4GB4eXmZKDIyNya5RERUNykUQJcu5p2va9fy/xIRUb2jUCgwadIkWX1ff/11g5NjqruY5BIRUd3VrZv5npOrVJbPR0RE9daLL74IFxcX2Nnpl+bY2dnBxcUFL7zwgokjI3NikktERHXXiBHme05uaWn5fEREVG95enpi3bp1UCgUNSa6dnZ2UCgU+OOPP+Dp6WmeAMksmOQSEVHdFRoKREQAen4iL5tSCfTsCbRrZ9p5iIjI5KKiohAbGwtnZ2ed7ZydnbF161b069fPTJGRuTDJJSKium3qVECtNu0cZWXl8xARkVWIiopCSkoKlEql1teVSiVu3rzJBNdKMcklIqK6LSYGGD68fLXVFJTK8m3K0dGmGZ+IiCzC09NTZ5Lr4eFh5ojIXJjkEhFR3Td/PuDtbfxEV6ksH3f+fOOOS0RERBbDJJeIiOo+b29g507A1dV4ia5SWT7ezp0An41IRERkNZjkEhFR/RAWBsTHG2dFt2IFNz6+fFwiIiKyGkxyiYio/ggLA86dA4YOrd04w4aVj8MEl4iIyOowySUiovrFywv49VeghkdDaGVnB8TGAitWcIsyERGRlWKSS0RE9ZNKZXgfV1eeokxERGTlmOQSERERERGR1WCSS0RERERERFaDSS4RERERERFZDSa5REREREREZDWY5BIREREREZHVYJJLREREREREVoNJLhEREREREVkNJrlERERERERkNZjkEhERERERkdVgkktERERERERWg0kuERERERERWQ0muURERERERGQ1mOQSEREREZF1OX0amDYNKCnR/npJSfnrp0+bNy4yCya5RERERERkHWJjgZ49gbAw4PPPAUHQ3k4Qyl8PCytvv3WreeMkk2KSS0RERERE9VtGBjBiBNC/P5CQUF5XWqq7T8XrCQlATAzw/PNAZqZp4ySzYJJLRERERET118mTQNu2wJo15WW12rD+Fe1/+w1o0wY4dcq48ZHZqSwdQF127tw5LF++HPHx8bh06RKysrKgVCrh7++PsLAwPPnkkxgxYgQ8PDwsEl9ZWRk2b96MTZs24dChQ7h16xZycnLg6uqKwMBAdOvWDYMHD0a/fv2gUChkzbFnzx4sWLCg1rG++OKLGDBgQK3HISIiIiKqdPIk8MgjwP37QFlZ7cYqKytfEe7ZE4iPL9/KTPWSQhCq26huu9LS0vDaa69h7dq1NbZ1c3PDhx9+iClTpsDOznwL4zt27MCECROQnJxcY9sOHTrg+++/R/fu3Q2e57333sNnn30mJ0SRzz//HG+//bbe7R0dHVFcXCypd3BwQFFRUa3jISIr4O4O5OZWFh0BSP/WABwAVP6t4eYG5OSYPra6jNdNPl47eXjd5OF1q1lGRvkKbkZGtQmuXtdNk1IJeHsD584BXl7GiZVqxdDcgNuVNZw8eRIdOnTQK8EFgNzcXLzzzjsYMGAACgoKTBxduTlz5qBfv356JbgAcOLECfTq1QtLliwxeK7jx48b3IeIiIiIyOQmTdKZ4MpWsaI7aZJxxyWzYZJbRXJyMnr37o20tDTJa6GhoYiOjkZERAQ8PT0lr2/duhXPPfccTL0w/vXXX2Pq1KmSeldXV/To0QMxMTHo0KGDZFW5pKQEL7/8MtZU3KugpxMnTtQqXiIiIiIio4uNBVatMn6CW6GsDFi5kqcu11NMcv9faWkphgwZgkyNE9UGDhyIS5cu4dSpU4iNjUV8fDxu3bqFxYsXS+7F3bJlC+bNm2eyGA8ePIh33nlHVOfs7Iwvv/wSaWlpOHDgALZs2YKkpCQkJydjzJgxoraCIGDcuHG4ceOGXvOlpqbizp07orqUlBQIgmDwlyFblYmIiIiIdJo9GzD1rYJKZfk8VO8wyf1/CxculGzNnTx5MtavX4+WLVuK6p2cnDB27FgkJiaicePGotdmzpyJe/fuGT0+QRAwadIklFY5Ct3Z2Rl//fUXJk+eDFdXV1H75s2bY8mSJfj2229F9bm5ufjoo4/0mlPzevj6+uKBBx6Q+R0QERERERnB6dPA/v2Gn6JsqLKy8gOozpwx7TxkdExyARQVFWHmzJmiul69emHu3Lk6+wUHB2PLli2wt7evrMvMzKyxnxwbNmzA0aNHRXULFiyo8TCpiRMnYsqUKaK6ZcuW4eLFizXOmZSUJCp36tRJv2CJiIiIiExl5UpAZaaHxKhU5fNRvcIkF8C6detw9+5dUd2cOXP0euxOeHg4JkyYIKpbtGgR1Eb+ZGnhwoWicuvWrfHSSy/p1XfWrFnw9/evLJeVleGHH36osZ/mSi6TXCIiIiKyuEOHgCq7G02qrKx8PqpXmOQCWL16tagcGhqKHj166N1/4sSJovKdO3ewd+9eo8QGAOnp6di5c6eobty4cXo/+9bZ2RmjR48W1a1bt67GflzJJSIiIqI6RRAAjd2NJp/vyJHy/1K9YfNJbklJCXbv3i2qGzBggEFjtG7dWnLfrj5JpL527NghObXZ0Bg121+7dg2JiYnVts/NzZU8oohJLhERERFZVG6u+Z8FnJMD5OWZd06qFZtPcpOSkpCn8abt2bOnweM8/PDDovKePXtqE5ZIfHy8qOzr64tWrVoZNEaXLl3g4OAgqtMVY1JSkiixbtCggSSRJyIiIiIyq+Ji25qXZLH5JPeMltPSOnToYPA4YWFhovLZs2dRUFAgO66qNGOUE5+joyNCQkJEdbpWcjXvx9X27F0iIiIiIrPSWLSx+nlJFpvPWs6dOycqu7i4yHpMjuYqp1qtxtWrV2sVWwXNGA1dxa2gGePly5erbVvd/bgZGRmYP38+Bg0ahMDAQLi6ulau8kZHR2PBggW4efOmrPiIiIiIiHRycwPc3c07p7s70KCBeeekWrH5JDc1NVVUlvscWM3n5QLA9evXZY1VVWlpqeTkZ2PFqCs+zSS3WbNmmDRpEh544AG8/vrr2LBhA65fv478/Hzcv38fV65cwbZt2zBp0iS0bNkS7777rkmeF0xERERENkyhALp0Me98XbuW/5fqDZtPcm/fvi0qV33UjiF8fX0ldenp6bLGqiotLU1y6JSxYszIyJCMDZQfxqW5RXrq1KlYsGABioqKapynsLAQn3/+Obp166ZztZiIiIiIyGDdupnvOblKZfl8VK/YfJKbmZkpKrvL3P7g5uYmqcvKypI1VlWa8QHGi7GsrAy5ubmSdmfPnkWxxs31ZWVllf9vb2+PNm3a4IknnkCfPn3QunVrrfNduHAB3bp1w4ULF2TFS0REREQkMWKE+Z6TW1paPh/VKzaf5GquTLq4uMgaR1u/wsJCWWNVpW3l1NQxah46VcHb2xufffYZUlNTcfbsWWzbtg07duzAuXPncPPmTUybNk0yR2ZmJgYOHIgcPY96Lyoq0rstEREREdmg0FAgIgIw9aGoSiXQsyfQrp1p5yGjY5KrkUSqZG59UCqVkrqSkhJZY1WlLck1dYya9+MCQPfu3XH8+HG888478PHxkbzepEkTfPLJJ0hISEBAQIDotfPnz2PGjBl6xTh79mx4eHhIVpKJiIiIiCpNnQqo1aado6ysfB6qd2w+ya26DRfQngjqQ1s/tRF+8DTjq24ufegbo5ubG9q1a1e5KhsSEoJt27ahadOmNc7Rvn17xMbGwtnZWVS/cOFCySFf2kydOhX37t2TPNOXiIiIiKhSTAwwfHj5aqspKJXl25Sjo00zPpmUzSe59vb2onKpzP392lZEHR0dZY1VlWZ8gOljnDlzJk6fPo379+/j1q1bOHDgADw9PfWep3379nj33XdFdYWFhVi5cmWNfR0dHWXfc0xERERENmT+fMDb2/iJrlJZPu78+cYdl8zG5pNczSRP7jZZUyW52sYwZ4yNGjXSuj25JpMmTZJsq/7zzz8NHoeIiIiISCtvb2DnTsDV1XiJrlJZPt7OnYCXl3HGJLOz+STXw8NDVM7Ly5M1jrZTil1dXWWNVZVmfIBxY5R7iFVNvL29ER4eLqo7fPiwSeYiIiIiIhsVFgbExxtnRbdiBTc+vnxcqrdsPsn19vYWlbOzs2WNo62f3OfZVqUZX3Vz6UOzn5eXl9bt0MbSvn17UfnevXt6PWeXiIiIiEhvYWHAuXPA0KG1G2fYsPJxmODWezaf5DZp0kRUTktLkzWOtn7GSHI9PT0lK8LGitEY8emiLUHPyMgw6ZxEREREZIO8vIBffwU0Dj/Vi50dEBsLrFjBLcpWwuaT3ODgYFE5NTVV1sFO169fl9S1aNFCdlxVBQUFico3btyQNY5mjMaKrzraToY2xhZuIiIiIiKt5Dxq09WVpyhbGZtPcttpPNy5tLQUycnJBo9z4cIFUdnPz0/WgU3aaMaoOZe+NPtpjquN3JOcAemqrUql0nqPMRERERERkbHYfJLbpUsXSd3Ro0cNHkezj+ahS7XRtWtXUTkpKcng5POff/7BnTt3RHXaYly5ciV69eqF1q1bw8vLCw4ODjh79qzhQQM4efKkqPzggw/KGoeIiIiIiEhfNp/k+vj4IDQ0VFS3a9cug8bIz8/HgQMHRHV9+vSpdWwVIiMjReWCggIkJCQYNMaOHTtEZYVCgccee0zSTq1WY9++fbhw4QKysrIgCILke9NHZmYmkpKSRHWPPPKIweMQEREREREZwuaTXACIiYkRlTds2IDCwkK9+69fv17SPtqI+/rDw8PRuHFjUd3q1asNGmPVqlWi8kMPPQRfX19Ju86dO0vqDJ0LABYuXCi5J3fAgAEGj0NERERERGQIJrkAXnjhBVE5MzMTCxcu1KtvaWkpZs+eLaqLiIhAmzZtjBafQqHAyJEjRXVLly5FSkqKXv0TEhKwc+dOUd24ceO0tm3Tpg3CNI5N37VrFw4ePKh3vDdu3MAXX3whqmvZsiWefPJJvccgIiIiIiKSg0kugLZt20q2F0+bNk2vLcGTJk3CmTNnRHVTpkwxanwAMHHiRNEzbfPz8/Hss8/WuOKclpaGESNGiOr8/f0xfPjwavuMHz9eUjdmzBi9ns977949PPvss5K2H374IRQKRY39iYiIiIiIaoNJ7v+bPXs27Oz+dzkKCwvRv39/bN++XWv74uJiTJo0Cd9//72o/uGHH8Yzzzyjc67IyEgoFArR1549e3T2CQwMxIQJE0R1Bw8eRHR0dLXPzb1w4QL69OmDa9euiepnzpyp81E+EyZMkJy8fO7cOfTu3RuXL1+utt+pU6fQq1cvHD58WFQfHR2NUaNGVduPiIiIiIjIWGQ8SMo6denSBe+++y7mzJlTWZeZmYno6Gj0798fw4cPR3BwMO7fv4/ExEQsWrRIkvC5u7tj2bJlJovx008/xbZt20Tz7t69G23btsWYMWPw2GOPwc/PD6mpqdiyZQtWrFiB/Px80RjR0dHVblWuoFKpsGzZMkRGRiIvL6+yPikpCW3btsWIESMQExODoKAgFBcXIzk5GZs3b8Yff/whOfU5MDAQP/30kxG+eyIiIiIiopopBEEQLB1EXaFWqzF27FgsXbrU4L5OTk7YsGEDoqKiamwbGRmJv//+W1S3e/duySnK2ly7dg2RkZG4fv26wTGGh4dj586daNiwoV7td+zYgYEDB0oSZX0FBQXhzz//RMuWLQ3u6+joiOLiYkm9g4MDioqKZMVDRFbG3R3Iza0sOgKQ/q0BOACo/FvDzQ3IyTF9bHUZr5t8vHby8LrJw+smD6+bVTI0N+B25Srs7OywZMkSvPfee1Cp9F/kDggIQFxcnF4Jbm0FBgZiz5496NGjh0H9nnrqKfz11196J7gA0LdvXxw5ckRyEJU+Bg4ciMOHD8tKcImIiIiIiORikqvBzs4Oc+bMwbFjxzBkyBC4uLhU29bf3x8ffPABTp8+jV69epktxsDAQOzfvx8//fST1kf+VNWjRw/8/vvv2LhxIzw8PAyeq23btjh+/DhWrlyJbt26ie5b1mRvb48BAwZg165dWL9+PXx8fAyej4iIiIiIqDa4XbkGBQUFiI+PR0pKCtLS0qBSqeDj44NOnTohLCxMZ9JnLjdu3MDRo0dx+/ZtZGVlwc3NDQEBAejRo4fk+bq1lZWVhYSEBNy8eRMZGRlQq9Xw8vJCq1at8NBDD6FBgwZGmYfblYmoRtySJg+vm3y8dvLwusnD6yYPr5tVMjQ34MFTNXB2dkbfvn0tHYZOzZo1Q7NmzcwyV8OGDREdHW2WuYiIiIiIiAxl+WVIIiIiIiIiIiNhkktERERERERWg0kuERERERERWQ0muURERERERGQ1mOQSERERERGR1WCSS0RERERERFaDSS4RERERERFZDSa5REREREREZDWY5BIREREREZHVYJJLREREREREVoNJLhEREREREVkNlaUDICIiKUEQkJGRgby8PDRo0ADe3t5QKBSWDouIiIiozuNKLhFRHZKdnY158+YhJCQEvr6+CAoKgq+vL0JCQjBv3jxkZ2dbOkQiIiKiOo1JLhFRHREXF4eAgABMnjwZycnJoteSk5MxefJkBAQEIC4uzkIREhERkS0RBAHp6em4du0a0tPTIQiCpUPSC5NcIqI6IC4uDjExMSgoKIAgCJJ/RCrqCgoKEBMTw0SXiIiITKa+7yxjkktEZGHZ2dkYPHgwBEGAWq3W2VatVkMQBAwePLjO/wNDRERE9Y817CxjkktEZGHLli1Dfn5+jQluBbVajfz8fCxfvtzEkREREZEtsZadZUxyiYgsSBAEzJ8/X1bfb775pt7cG0NERER1mzXtLGOSS0RkQRkZGbhy5YrByaogCLhy5QoyMzNNFBkRERHZEmvaWcYkl4jIgvLy8mrVPzc310iREBERka2ytp1lTHKJiCyoQYMGterv5uZmpEiIiIjIVlnbzjImuUREFuTt7Y3g4GAoFAqD+ikUCgQHB8PLy8tEkREREZGtsLadZUxyiYgsSKFQYNKkSbL6vv766wYnx0RERESarG1nGZNcIiILe/HFF+Hi4gI7O/3+Srazs4OLiwteeOEFE0dGREREtsDadpYxySUisjBPT0+sW7cOCoWixkTXzs4OCoUCf/zxBzw9Pc0TIBEREVk1a9tZxiSXiKgOiIqKQmxsLJydnXW2c3Z2xtatW9GvXz8zRUZERES2wJp2ljHJJSKqI6KiopCSkgKlUqn1daVSiZs3bzLBJSIiIqOzpp1lTHKJiOoQT09PnUmuh4eHmSMiIiIiW2EtO8tUlg6AiIiIiIiI6oaKnWU+Pj4oKyuTvF6xs6wuf/DOlVwiIiIiIiKqVN93ljHJJSIiIiIiIqvBJJeIiIiIiIisBpNcIqK64vRpYNo0oKRE++slJeWvnz5t3riIiIiI6hEmuURElhYbC/TsCYSFAZ9/DgiC9naCUP56WFh5+61bzRsnERERUT3AJJeIyFIyMoARI4D+/YGEhPK60lLdfSpeT0gAYmKA558HMjNNGycRERFRPcIkl4jIEk6eBNq2BdasKS+r1Yb1r2j/229AmzbAqVPGjY+IiIionmKSS0RkbidPAo88Ur6Sq+X5cwYpKysfp2dPJrpERERUe1ZwRgiTXCIic8rIAPr2Be7fr32CW6GsrHy8Pn24dZmIiIjksaIzQpjkEhGZ06RJxlnB1VSxojtpknHHJSIiIutmhWeEMMklIjKX2Fhg1SrjJ7gVysqAlSvr5CeqREREVAdZ6RkhTHKJiMxl9mzAzsR/7SqV5fMQERER6WLFZ4QwySUiMofTp4H9+w3/hNRQZWVAfDxw5oxp5yEiIqL6y8rPCGGSS0RkDitXAiqVeeZSqcrnIyIiItLGys8IYZJLRGQOhw7VfIiDsZSVlc9HREREpMkGzghhkktEZGqCABw9at75jhyp/uh/IiIisl02cEYIk1wiIlPLzQVycsw7Z04OkJdn3jmJiIiobrORM0KY5BKRyQiCgPT0dFy7dg3p6ekQbHVlsbjYtuYlIiKiuslGzghhkktERpednY158+YhJCQEvr6+CAoKgq+vL0JCQjBv3jxkZ2dbOkTzcnCwrXmJiIiobrKRM0KY5BKRUcXFxSEgIACTJ09GcnKy6LXk5GRMnjwZAQEBiIuLs1CEFuDmBri7m3dOd3egQQPzzklERER1lw2dEcIkl4iMJi4uDjExMSgoKIAgCJLtyRV1BQUFiImJsZ1EV6EAunQx73xdu5b/l4iIiAiwqTNCmOQSkVFkZ2dj8ODBEAQB6hoOM1Cr1RAEAYMHD7adrcvdupnvHhilsnw+IiIiogo2dEYIk1wiMoply5YhPz+/xgS3glqtRn5+PpYvX27iyOqIESPMdw9MaWn5fEREREQVbOiMECa5RHrgKcG6CYKA+fPny+r7zTff2Mb1DA0FIiLM81y6nj2Bdu1MOw8RERHVLzZ0RgiTXCIdeEqwfjIyMnDlyhWDk1VBEHDlyhVkZmaaKLI6ZupU8zyXbupU085BRERE9Y8NnRHCJJeoGjwlWH95tTxQIDc310iR1HExMcDw4eWrraagVJZvU46ONs34REREVL/ZyBkhTHKJtOApwYZpUMttKG5ubkaKpB6YPx/w9jZ+oqtUlo8rc9s4ERER2QAbOSOESS6RBp4SbDhvb28EBwdDYeB2FIVCgeDgYHh5eZkosjrI2xvYuRNwdTVeoqtUlo+3cydgS9eSiIiIDGMjZ4QwySXSwFOCDadQKDBp0iRZfV9//XWDk+N6LywMiI83zopuxQpufHz5uERERES62MAZIUxyiargKcHyvfjii3BxcYGdnp8M2tnZwcXFBS+88IKJI6ujwsKAc+eAoUNrN86wYeXjMMElIiIifdjAGSFMcomq4CnB8nl6emLdunVQKBQ1Jrp2dnZQKBT4448/4OnpaZ4A6yIvL+DXXwFnZ8P72tkBsbHAihXcokxERESGsfIzQpjkElXBU4JrJyoqCrGxsXCuIWlzdnbG1q1b0a9fPzNFVsfJOeXQ1ZWnKBMREZE8Vn5GCJNcoip4SnDtRUVFISUlBcpq/sJUKpW4efMmE1wiIiIiS7LiM0KY5BJVwVOCjcPT01Nnkuvh4WHmiIiIiIhIwkrPCGGSS1QFTwk2gtOngWnTgJIS7a+XlJS/fvq0eeMiIiIiIikrPCOESS6RBp4SLFNsbPnz0MLCgM8/B6o7vEsQyl8PCytvv3WreeMkIiIiIikrOiOESa4O586dw9SpU/HII4+gUaNGcHR0hIuLC4KCgvDUU09h4cKFuHfvnsXiKysrw4YNGzBmzBi0a9cOXl5eUKlU8PDwQIcOHTB+/HjExcUZ7bE2ubm5WLhwIQYPHoygoCC4ubnBwcEBvr6+ePjhhzF16lScOnXKKHNZEk8JNlBGRvkx8f37AwkJ5XWlpbr7VLyekFB+jP3zzwM2fDI1ERERERmRQBK3b98WhgwZIgCo8cvNzU34/PPPhbKyMrPG+OeffwotWrTQK8YOHToICQkJsudSq9XCvHnzBHd3d73mGzRokJCSklKr78/BwUHr2A4ODrUa1xDbt28XXF1ddX6vrq6uQlxcnNliqnNOnBAEPz9BUCoFoXyNtvLLoZpr5qDRTgDK+/v5CcLJk5b+jizDzc3wa+fmZumoLY/XTR5eN/l47eThdZOH100eXjf56vC1MzQ34EquhpMnT6JDhw5Yu3atXu1zc3PxzjvvYMCAASgoKDBxdOXmzJmDfv36ITk5Wa/2J06cQK9evbBkyRKD5yoqKsKgQYPwxhtvICcnR68+69evR3h4OI4cOWLwfHUJTwmuwcmTwCOPlK/klpXVbqyysvJxevYErGA3ABERERFZDpPcKpKTk9G7d2+kpaVJXgsNDUV0dDQiIiK0bkvdunUrnnvuOaNtDa7O119/jalTp0rqXV1d0aNHD8TExKBDhw6SbbYlJSV4+eWXsWbNGr3nEgQBw4YNw8aNGyWv+fv7IzIyElFRUQgODpa8fufOHURFReHixYt6z1fnnD4Nz88+g1Kt1vqyUq2Gx3//a5sHKGVkAH37Avfv1z7BrVBWVj5enz7cukxERERE8pllfbkeKCkpETp16iRZAh84cKBw6dIlUduCggJh8eLFgoeHh6T9V199ZbIYExISBJVKJZrP2dlZ+PLLL4W8vDxR22vXrgljxoyRxOfm5iZcv35dr/m++OILSf+mTZsKGzdulGzPPnz4sNCjRw9J+06dOsnaym3R7cpbtghCRET5FgyVSvdWDZWqvF1EhCDExpo+trpi+HCtW5QN3uKi7UupFIQRIyz9HZpXHd4eVKfxusnD6yYfr508vG7y8LrJw+smXx2+dobmBkxy/98333wjuWiTJ0/W2efy5ctC48aNRX28vLyE7Oxso8enVquFLl26iOZydnau8V7bb7/9VvJ9jRkzpsb5UlNTJfejhoSECHfv3q22T0lJiTBixAjJfMuXLzf4+7VIkpueXp68AYJgZ2fYD3hF+xEjBCEjw3Qx1gVbtuhOUg25brq+bOlDgzr8j0qdxusmD6+bfLx28vC6ycPrJg+vm3x1+NrxnlwZioqKMHPmTFFdr169MHfuXJ39goODsWXLFtjb21fWZWZm1thPjg0bNuDo0aOiugULFqB79+46+02cOBFTpkwR1S1btqzGbcRz5szB/fv3K8v29vbYuHEjfHx8qu2jUqnw888/o0ePHqL6GTNmoKS6Z6bWFSdPAm3bAhXbuavZolytiva//Qa0aWPd95XOnl3+TDRTUirL5yEiIiIiMhCTXADr1q3D3bt3RXVz5syBQqGosW94eDgmTJggqlu0aBHUhiZJNVi4cKGo3Lp1a7z00kt69Z01axb8/f0ry2VlZfjhhx+qbZ+fn4/ly5eL6l566SW0adOmxrkcHBywYMECUV1ycjLi4uL0itUieICS/k6fBvbvN/xDAEOVlQHx8cCZM6adh4iIiIisDpNcAKtXrxaVQ0NDJauRukycOFFUvnPnDvbu3WuU2AAgPT0dO3fuFNWNGzdOryQcAJydnTF69GhR3bp166ptv337dmRnZ4vqxo8fr9dcQHni361bN1GdvqdVmx0PUDLMypXyHhQuh0pVPh8RERERkQFsPsktKSnB7t27RXUDBgwwaIzWrVujZcuWojpdSaShduzYITm12dAYNdtfu3YNiYmJWttqrro2adIEnTt3rtV8mzZtqptblidNMs4KrqaKFd1Jk4w7rqUdOgSUlppnrrKy8vmIiIiIiAxg80luUlIS8vLyRHU9e/Y0eJyHH35YVN6zZ09twhKJj48XlX19fdGqVSuDxujSpQscHBxEddXFqDlfRESEQXMB0uuRlZWFkydPGjyOScXGAqtWGT/BrVBWVr4SuXWracY3N0EANO4LN/l8R46U/5eIiIiISE82n+Se0XLPX4cOHQweJywsTFQ+e/YsCgoKZMdVlWaMcuJzdHRESEiIqE7bSm5JSQkuXbpU6/k0r0d181kUD1AyTG4ukJNj3jlzcgCND6GIiIiIiHSx+ST33LlzorKLiwseeOABg8fR3K6sVqtx9erVWsVWQTNGQ1dxK2jGePnyZUmby5cvS7YVy5nPx8cHHh4eNc5nMTxAyXDFxbY1LxERERHVSzaf5KamporKchJcAGjcuLGk7vr167LGqqq0tFRy8rOxYtQWn+b1MPV8FsMDlAynsd3d6uclIiIionrJ5pPc27dvi8pVH7VjCF9fX0ldenq6rLGqSktLkxw6ZawYMzIyJGNrXg9jzmeM62E0PEDJcG5ugLu7eed0dwcaNDDvnERERERUr5lpKavuytR4xIu7zF/i3dzcJHVZWVmyxqpKMz7AeDGWlZUhNzdXNJ4p5zPG9TAKSxygdPhw+b2lej72qc7q1An4+2/zzRceDuTnm28+S5FzuJYglD+qypbxusnD6yYfr508vG7y8LrJw+smnxUd9mnzSW5RUZGo7OLiImscbf0KCwtljVWVZnzVzaWP6mKsmsSacj59rkdRUZHWGIzKSAcoqQEcM2ROLR+EWLPq7nY26Lrt2WOTK7l6Xbu8PJu8NrrwusnD6yYfr508vG7y8LrJw+smn4lPrjEpJrkaCZVK5n2aSqVSUmeM58JqS/hMGaMp59PnesyePRsfffSRrPn0ZuBBRv8BUAbgFoAfqtSXAjDs6cEE8LrVBq+dPLxu8vC6ycdrJw+vmzy8bvLwuhlu/EsvoXGzZuW/43/wgaXD0cnmk9wyjWekaksE9aGtn9oIJ/dqxlfdXPrQJ0ZTzqfP9Zg6dSqmTJkCX19fFJvqVF0DDzKq+BHOB/Cv2swbFwe4utZmhLrhlVeAU6dMO4dCAYSGAgsXmnYeIiIiItJL644d4VJPfpe1+STX3t5eVC6VeRiRtlVKR0dHWWNVpRkfYNoYq5tPzmqu5nz6XA9HR0ejXDedKg5QMnDLsguAcLlzursDffvW/3tygfLn/vbvb9o5BAGYMweIiDDtPERERERkdWz+dGXNhEru6qGpklxtY5gyRlPOZ/LkVV8KBdCli3nn69rVOhJcAIiJAYYPB2Su8NdIqQRGjACio00zPhERERFZNZtPcj08PETlvLw8WePk5uZK6lyNsJyvGR9g3Bg1D4cy5XzGuB5G062b+Z6Tq1SWz2dN5s8HvL2Nn+gqleXjzp9v3HGJiIiIyGbYfJLr7e0tKmdnZ8saR1s/uc+XrUozvurm0odmPy8vL8n2ZFPOZ4zrYTQjRpjvObmlpeXzWRNvb2DnzvJ7jI2V6CqV5ePt3Al4eRlnTCIiIiKyOTaf5DZp0kRUTktLkzWOtn7GSOo8PT0lK6DGilFbfJrXw9TzWUxoaPn9nnYm/hFQKoGePYF27Uw7jyWEhQHx8cZZ0a1YwY2PLx+XiIiIiEgmm09yg4ODReXU1FRZBztdv35dUteiRQvZcVUVFBQkKt+4cUPWOJoxaotP83rIna+kpAS3bt2qcT6LmjoVMMIJ2DqVlZXPY63CwoBz54ChQ8vLhia7Fe2HDSsfhwkuEREREdWSzSe57TRW2EpLS5GcnGzwOBcuXBCV/fz84OPjU6vYKmjGqDmXvjT7aY4LlG9X1lxxlTPf5cuXJY8j0jafRfEAJePw8gJ+/RWIjQV69CivU6mqP2hLofjf/dA9epT3W7GCW5SJiIiIyChsPsntouWU3aNHjxo8jmaf8HDZD5uR6Nq1q6iclJRk8GrzP//8gzt37ojqqotRcz5jXA8A6NSpk8HjmBwPUDKe6Ghg3z7g9Gng3XeBxx4rf3RSVe7u5fXvvlvebt8+6/8QgIiIiIjMyuaTXB8fH4SGhorqdu3aZdAY+fn5OHDggKiuT58+tY6tQmRkpKhcUFCAhIQEg8bYsWOHqKxQKPDYY4/pNd/+/ftRWFhYq/lCQ0PRqFEjg8YwCx6gZHzt2gGffFL+/Wdnlz+POD29/L/Z2eX1n3xinfcpExEREZHF2XySCwAxMTGi8oYNGwxK6tavXy9pH23E1anw8HA0btxYVLd69WqDxli1apWo/NBDD8HX11drW83rkZ+fj82bN+s91/3797Fp0yadY9YpPEDJdBQKwM2t/Jq4uVnPs4KJiIiIqM5ikgvghRdeEJUzMzOxcOFCvfqWlpZi9uzZorqIiAi0adPGaPEpFAqMHDlSVLd06VKkpKTo1T8hIQE7d+4U1Y0bN67a9q1bt5ZsWZ49ezbUeh7SNH/+fNy7d6+yrFAoMHbsWL36WgwPUCIiIiIisgpMcgG0bdtWsr142rRpem0JnjRpEs6cOSOqmzJlilHjA4CJEyeKnmmbn5+PZ599tsYV57S0NIzQeEarv78/hg8frrPfG2+8ISofP35cr+9r7969mD59uqiuf//+CAkJqbGvxfEAJSIiIiKieo9J7v+bPXs27Ko8M7WwsBD9+/fH9u3btbYvLi7GpEmT8P3334vqH374YTzzzDM654qMjIRCoRB97dmzR2efwMBATJgwQVR38OBBREdHV/sc2wsXLqBPnz64du2aqH7mzJmSZ+9qGj58ODp06CCqmzdvHiZPnoySkhKtfWJjY/H000+juLi4sk6lUmHOnDk656pzeIASEREREVG9pRAEQbB0EHXF1KlTJQmZQqFA//79MXz4cAQHB+P+/ftITEzEokWLcPnyZVFbd3d3JCYmomXLljrniYyMxN9//y2q2717t+TAJ015eXno1KmTZF4vLy+MGTMGjz32GPz8/JCamootW7ZgxYoVyM/PF7WNjo7Gli1boNDj3sgTJ06ge/fuktXikJAQjB8/Hp07d4arqyuuXLmClStXIjY2Fppvp//+97949913a5xLk6OjoyhZruDg4ICioiKDx6s1QQDy8oDiYsDBAWjQgPeXEhERERGZgaG5AZPcKtRqNcaOHYulS5ca3NfJyQkbNmxAVFRUjW3lJrkAcO3aNURGRuL69esGxxgeHo6dO3eiYcOGevfZtm0bBg0aJCuxHDNmDBYvXqxXQq2pziW5RERERERkEYbmBtyuXIWdnR2WLFmC9957D6qKey31EBAQgLi4OL0S3NoKDAzEnj170KPinlE9PfXUU/jrr78MSnAB4Mknn0RsbCyaNm2qdx+lUon3339fdoJLREREREQkF5NcDXZ2dpgzZw6OHTuGIUOGwMXFpdq2/v7++OCDD3D69Gn06tXLbDEGBgZi//79+Omnn9C5c2edbXv06IHff/8dGzduhIeHh6z5Hn/8cZw7dw4ffPABmjdvXm07lUqFIUOG4NChQ5g1axYTXCIiIiIiMjtuV65BQUEB4uPjkZKSgrS0NKhUKvj4+KBTp04ICwsTHVZlKTdu3MDRo0dx+/ZtZGVlwc3NDQEBAejRo4fk+brGkJSUhPPnz+P27dsoKCiAp6cnWrZsie7du8PNzc0oc3C7MhERERERAbwnl6wEk1wiIiIiIgJ4Ty4RERERERHZMCa5REREREREZDWY5BIREREREZHVYJJLREREREREVoMHT1GdpOvxQw4ODmaMhIiIiIiILEnboVMVtKWzTHKpTuIzdomIiIiIqCba0lluVyYiIiIiIiKrwSSXiIiIiIiIrAaTXCIiIiIiIrIaTHKJiIiIiIjIaqgsHQCRoSx5unJxcTFPdyaz4nuOzInvNzI3vufInPh+q790na6sDU9XJtJTTk4OPDw8cO/ePbi7u1s6HLIBfM+ROfH9RubG9xyZE99vtoXblYn05OjoiOnTp8PR0dHSoZCN4HuOzInvNzI3vufInPh+sy1cySUiIiIiIiKrwZVcIiIiIiIishpMcomIiIiIiMhqMMklIiIiIiIiq8Ekl4ioDigqKsJvv/2GiRMnonPnznjggQfg7OwMV1dXNGvWDD169MA777yDuLg48CgFModvvvkGCoWi8mvGjBmWDomIiEgvPHiKqBrnzp3D8uXLER8fj0uXLiErKwtKpRL+/v4ICwvDk08+iREjRsDDw8PSoVI9Vlpairlz5+LLL7/EnTt39OrTtm1bfPzxxxg8eLCJoyNbde7cOXTu3BkFBQWVddOnT2eiS7VWWlqKrVu3YvPmzTh69CiuXbuGvLw8uLi4wMfHB507d8Zjjz2G559/Hm5ubpYOl+qxsrIybNq0CX/++ScSEhJw+/ZtZGZmwtXVFd7e3ggNDUVkZCSGDRuGRo0aWTpcMjImuUQa0tLS8Nprr2Ht2rU1tnVzc8OHH36IKVOmwM6OGyPIMDdv3sSQIUNw8OBBWf0nTJiAefPm8cH2ZFQlJSXo3r07jh07Jqpnkku19euvv2LatGm4ceNGjW3d3d0xbdo0vPPOO/z3lQz222+/Ydq0aUhOTq6xraOjI8aOHYs5c+bwgxUrwiSXqIqTJ0+iX79+SEtLM6hfdHQ01q5dC2dnZxNFRtYmMzMTPXv2xLlz5ySv2dvbo0OHDmjUqBGKi4tx7do1XLx4Ues4zz//PFasWGHqcMmGTJs2DbNnz5bUM8kluQoLC/HSSy9h9erVBvd97LHHsHnzZri4uJggMrI2arUar732GhYuXGhw31atWmHDhg1o06aNCSIjc2OSS/T/kpOT0bVrV2RmZkpeCw0NRbNmzXDv3j2cOXMG2dnZkjb9+/fHpk2boFAozBAt1Xf9+/dHbGysqM7f3x8zZszAqFGj4OrqKnrt+vXr+Oyzz7Bw4ULJPbmff/453n77bZPHTNYvPj4ejz76KNRqteQ1JrkkR3FxMfr3748dO3ZIXvPw8ECnTp3g7u6OO3fu4NixYyguLpa069evH7Zt28YVXarRG2+8gW+++UZSr1Kp0KFDBzRp0gT5+fk4deqU1luEHnjgARw4cADNmjUzR7hkSgIRCSUlJUKnTp0EAKKvgQMHCpcuXRK1LSgoEBYvXix4eHhI2n/11VeW+QaoXtm2bZvkvRMaGiqkpKTU2Hfjxo2Cvb29qK+bm5uQlpZmhsjJmuXk5AhBQUGS92bF1/Tp0y0dItVDEydOlLyXGjduLPzyyy9CcXGxqG1OTo4wa9YswdHRUdJn/vz5FvoOqL7YuHGj5H2jVCqFf//730J6erqorVqtFmJjY4WQkBBJn4iICAt9B2RMTHKJBEH45ptvJH/JTZ48WWefy5cvC40bNxb18fLyErKzs80UNdVXffr0kSSpycnJevfX9n79+OOPTRgx2YLRo0dXm+AyySU5du7cKXkfde7cWbh165bOfvHx8YKLi4uon7e3t1BYWGimyKm+UavVwoMPPih6z6hUKmHTpk06+927d0/o0qWL5H26Zs0aM0VOpsJ9H2TzioqKMHPmTFFdr169MHfuXJ39goODsWXLFtjb21fWZWZm1tiPbNvdu3exe/duUd3EiRMRFBSk9xgTJ05EixYtRHWbN282Snxkm9avX4+lS5dWltu3b48mTZpYLiCyCu+8846oHBQUhO3bt9d4km1ERITk3+WMjAxs2LDB2CGSlTh69CguXLggqnv33XcxYMAAnf3c3d2xdu1aODk5ieqXL19u9BjJvJjkks1bt24d7t69K6qbM2eOXvfWhoeHY8KECaK6RYsWab2fjQgA9u7di7KyMlHd0KFDDRpDqVTiqaeeEtUlJSXx+bkky+3btzF+/PjKsoODA3755RfRB3hEhvrrr79w/PhxUd3SpUvh4+OjV/8JEybA3d1dVLdz506jxUfWZdeuXaKyQqHAa6+9plff5s2bY+DAgaK6v/76y1ihkYUwySWbp3naY2hoKHr06KF3/4kTJ4rKd+7cwd69e40SG1mfs2fPisoODg7o0KGDweNoruSWlJRoPTSNqCZjxoxBenp6Zfnjjz9G+/btLRgRWYMlS5aIygMGDECvXr307u/i4oKoqCi4uLigWbNm6NSpExwdHY0dJlmJlJQUUdnX1xeNGzfWu3+XLl1E5fz8fGRlZRklNrIMlaUDILKkkpISydbRmra2aGrdujVatmyJy5cvV9atW7cOkZGRxgiRrEx4eDgmTZqEW7duITU1FWVlZbJODC0sLDRBdGRrvvvuO2zbtq2yHBERIdliSmSo0tJSyenxkyZNMnic3377jU8sIL3k5+eLyqWlpQb117ZzpaioqFYxkWUxySWblpSUhLy8PFFdz549DR7n4YcfFiW5e/bsqW1oZKViYmIQExNT63HOnDkjKjs6OsLb27vW45LtuHDhgiihbdCgAZYvX87HtFCtHT58GPfu3assN2zYEL179zZ4HCa4pC8/Pz9ROTMzEzdu3ND7UUCnTp0SlZ2dnfXeWk91E/8lI5ummSgAkLV1NCwsTFQ+e/YsCgoKZMdFpEtRUZFklaRdu3YWiobqo9LSUowcOVK0+jF37lzJNngiOQ4dOiQqd+3aFSoV11XIdLp27Sqp++677/Tqm56ejt9//11U16tXL75n6zn+6ZFNO3funKjs4uKCBx54wOBxWrZsKSqr1WpcvXoVbdu2rVV8RNr8/PPPonsoAUgOoiLS5eOPP8bRo0cry9HR0aLDp4hqIykpSVTW9uHx7du3ERcXhxMnTuDOnTtwdHRE48aN0alTJzzxxBNwdXU1U7RkDaKjo+Hl5SU6m+LLL79EZGQknnjiiWr7FRUVYcSIEaKdBwDwxhtvmCxWMg8muWTTUlNTRWU5CS4ArYcbXL9+nUkuGd3du3fxwQcfiOrs7OwwfPhwC0VE9c3Bgwfx6aefVpa9vb0lhwQR1UbV23cAoGnTppX/f+rUKUyfPh2bNm2SnDRfwcnJCePHj8eMGTPQsGFDk8ZK1sHZ2Rmffvqp6IkXJSUlGDBgAKZNm4Y333xT8l6Kj4/HG2+8gWPHjonqR48ejSeffNIscZPpcLsy2bTbt2+Lyv7+/rLG8fX1ldRprrQR1ZZarZachAsAI0aMQKtWrSwUFdUn9+/fx8iRI0XJxcKFC2t8bimRIa5duyYqV7y/PvnkE3Tq1Anr16+vNsEFyg/W++abb9CqVSvEx8ebMlSyIv/617/w5ptviupKS0vx8ccfw8/PD127dsVTTz2FqKgoBAQE4JFHHpEkuOPGjcMPP/xgxqjJVLiSSzZN85Erms/k05ebm5ukjkfPk7G999572LJli6jOy8sLn332mYUiovrmzTffxJUrVyrLzz//PJ599lkLRkTWSPODOBcXF7z66qt63yNZdZy+fftizZo1Bj/5gGzTV199hfDwcLz99tu4c+dOZX1paanoFg1NERERmD59Ovr27WuOMMkMuJJLNk3zeHgXFxdZ42jrx0e8kDHNmjULX3zxhahOoVDgp59+MuhZgGS7Nm3ahMWLF1eWAwICsGDBAgtGRNYoLy8PxcXForoffvhBlOA2bNgQM2bMwLFjx3Dv3j3k5eXh1KlTmDNnjuSU3MLCQjz//PO4cOGCWeKn+m/UqFFISEiQPPu2OnZ2dvD19YWDg4OJIyNzYpJLNk0zyZV7kp5SqZTUlZSUyBqLSNPs2bMl9+ECwEcffYSnn37aAhFRfXPnzh2MGzeusqxQKPDzzz/D09PTckGRVdJ8XilQ/gFLhb59++Ly5cuYPn06OnXqBHd3d7i6uiI0NBTvvfceLl68KLkfMjc3F8OGDYMgCCaPn+q327dvY9y4cWjVqpXOlduq1Go1NmzYgMjISDz33HOSQ6iofmKSSzZN854gbcmqPrT1U6vVssYiqiAIAt5++21MmzZN8tqrr76qNfEl0mbcuHG4e/duZfnVV19Fnz59LBgRWSvNVdyqevfujdjYWHh5eVXbxsPDAxs3bsQjjzwiqk9KSsKGDRuMFSZZoUOHDqFTp05YsmSJ6Pe7fv36YdWqVbhx4waKioqQkZGBhIQEvP/++5IP+n7//Xf06NFDtNWZ6icmuWTT7O3tReXS0lJZ42hbtXV0dJQ1FhFQ/p4aPXo05s6dK3ntlVdewfz58y0QFdVHP/zwAzZv3lxZfvDBB3kfN5lMdR/wurm5YdWqVZJ/d7Wxt7fHL7/8Itk++tVXXxklRrI+ly5dQnR0tOhAUVdXV6xbtw5xcXEYNmwYmjZtCgcHB3h5eaF79+6YNWsWrly5Itk5cO7cOQwcOFDn4WhU9zHJJZummYjq+gRaFya5ZEyZmZno27cvli9fLnntrbfewnfffQeFQmGByKi+uXz5MqZMmVJZVqlUWL58OZydnS0YFVmz6pLYf/3rXwY9waB58+YYOnSoqC4hIQF5eXm1io+s08svvyw6TFSlUmHz5s145plndPbz8vLCli1b0L9/f1F9QkICFi5caJJYyTyY5JJN8/DwEJXl/uOZm5srqeOD7EmOS5cuoXv37vj7778lr82ZM0dy+BRRdcrKyjBy5Ejcv3+/sm7atGl46KGHLBgVWbvqPkAZNGiQwWNpJh6lpaU4cOCArLjIeu3du1fyb+a7776L3r1769Xfzs4Ov/76q+TQs88//5y3ntVjfIQQ2TRvb29ROTs7W9Y42vrJfeYu2a49e/Zg8ODBkkdb2dvbY/HixXjhhRcsFBnVR+vWrcOhQ4dEdSdOnMCQIUP06l/1Hl4AWLNmDU6fPi2qe+211xAZGVmrOMm6eHh4QKVSSW7/0fek25r6/PPPP7JjI+u0atUqUdnR0RHvvPOOQWO4u7tjypQp+Pe//11Zd+PGDSQkJCAiIsIocZJ5Mcklm9akSRNROS0tTdY42voxySVDLF++HOPGjZNsfff09MQff/yh9yfSRBW0nXK7ceNG2eOdO3cO586dE9VprrQRKRQK+Pr64tatW5V1Hh4esh7P4uvrK6nTfAYvUUJCgqjcs2dPWSfHDxo0SJTkAuWHWTHJrZ+4XZlsWnBwsKicmpoq6/Cp69evS+patGghOy6yLXPnzsXo0aMlCW5QUBAOHDjABJeI6hXNf//kPlLPyclJUqf56D8izd/BHnzwQVnjtGrVSvJhDHcO1F9McsmmtWvXTlQuLS1FcnKyweNoPqTez88PPj4+tYqNbMPs2bPx9ttvS57/2L17dxw6dAht2rSxUGRERPK0bt1aVM7Pz5d1O1BWVpakTvMsDSLN81RcXFxkj6W5Alz1TAOqX5jkkk3Tdr+Pvg8P19UnPDxcdkxkO+bPn6/1GbgDBw7EX3/9pXWrHpG+Ro8eDUEQZH81b95cNN706dMlbUaPHm2Zb47qtG7duknqzpw5Y/A4V69eldRp7sAiatiwoah88+ZN2WNpfhjDBYv6i0ku2TQfHx+EhoaK6nbt2mXQGPn5+ZLTHvv06VPr2Mi6bdmyBW+++aak/uWXX8a6dev4iBciqre03WKxbt06g8fRdpJyx44d5YREVqxRo0ai8vHjx2WNc+HCBcmjJBs3biw7LrIsJrlk82JiYkTlDRs2oLCwUO/+69evl7SPjo42SmxknW7cuIGRI0dKHk3wyiuv4IcffoCdHf9qJqL6q2XLlpLbgdasWWPws+hXrFghKoeFhSEgIKDW8ZF10TwY6vz580hMTDR4nD/++ENSx9Pj6y/+JkU2T/OxLJmZmXo/ALy0tBSzZ88W1UVERPA+StLpX//6F+7duyeqi4mJwYIFCywUERGRcY0bN05UvnnzJubPn693/82bN+PYsWOiulGjRhklNrIuTz31lKTuww8/NGiMrKwsfPnll6K6wMBAhIWF1So2shwmuWTz2rZtK9lePG3aNMmR9NpMmjRJcp/RlClTjBofWZft27dj+/btorrGjRtj+fLlXMElIqsxduxY+Pn5ieref/997N+/v8a+N27cwMsvvyyq8/DwwNixY40aI1mHqKgoSTK6detWfPXVV3r1LykpwbBhwySPp5o6darRYiTz429URCg/4bZqglFYWIj+/ftLkpEKxcXFmDRpEr7//ntR/cMPP4xnnnnGpLFS/fbf//5XUnfr1i14e3tDoVDU6uvatWvm/4aIiLRwc3PD559/LqorKirCE088gV9//bXafomJiXjkkUckz5//8MMP4eXlZZJYqX6zs7OTvNeA8kWHiRMnan1meIXr16/j8ccfx59//imqDw0NxZgxY4weK5mPQtB8bgWRjZo6dSrmzJkjqlMoFOjfvz+GDx+O4OBg3L9/H4mJiVi0aBEuX74sauvu7o7ExES0bNnSnGFTPXLr1i00adLEZONfvXoVgYGBJhufbEtgYKDo+ZPTp0/HjBkzLBcQ1UuvvPKK5ANhAOjatSteeOEFhIeHw8HBAVevXsX69euxZs0alJWVidr26dMHcXFx3O1COs2YMQMfffSRpN7DwwOjRo1Cz549ERgYiLKyMly7dg1xcXFYvXq15F5xb29vHD58WPK8Z6pfmOQS/T+1Wo2xY8di6dKlBvd1cnLChg0bEBUVZfzAyGqsXr0aw4cPN9n4THLJmJjkkjEIgoA333wT33zzjaz+Dz30EOLi4iTPLyXSZvLkyfj6669l92/UqBE2btyIhx56yHhBkUXwIzGi/2dnZ4clS5bgvffeg0ql0rtfQEAA4uLimOBSjVJSUiwdAhGRWSkUCsybNw/ff/+9wduNR48ejV27djHBJb199dVX+PXXXyXPztVH7969kZiYyATXSnAll0iLU6dO4eOPP8bWrVurvZfD398f48ePx1tvvQUPDw8zR0hERFS/ZGRk4LPPPsPvv/+Oq1evam2jUqkQFRWFqVOnSh4NQ6Sv3NxcfPvtt1i6dCkuXLhQbTsnJydERkbi7bffxuOPP27GCMnUmOQS6VBQUID4+HikpKQgLS0NKpUKPj4+6NSpE8LCwnh/EBERkQwnT57ExYsXcevWLeTk5MDd3R0hISHo1q2brFU4ouqkpqbi8OHDuHPnDjIyMuDg4ABfX180b94c3bt3h6Ojo6VDJBNgkktERERERERWg8tQREREREREZDWY5BIREREREZHVYJJLREREREREVoNJLhEREREREVkNJrlERERERERkNZjkEhERERERkdVgkktERERERERWg0kuERERERERWQ0muURERERERGQ1mOQSERERERGR1WCSS0RERERERFaDSS4RERERERFZDZWlAyAiIsvJyclBREQEBEEAAAwdOhQffPBBte3HjRuHgwcPAgAaNGhQ+f9EREREdQVXcomIbNjx48dx+vRpnDlzBmfOnIGPj4/O9ps2bapsq1Qqq22nUChEX0uXLjVy5GQrRo8eLXovRUZGWjoki8vPz7d0CEREdRqTXCIiG3bs2DFRuXPnztW2/eeff3D37l292hKR8aWkpOCZZ57B77//bulQiIjqNCa5REQ2LDExsfL/VSoV2rdvr1dbAAgPDzdZXET0P6WlpZg7dy7atGmD9evXV95eQERE2vGeXCIiG1Z1JbdNmzZwcnLSqy3AJJfIXMLDw3Hq1ClLh0FEVG9wJZeIyEbl5+fjwoULleWaktaqSa6TkxPatm1rstiI6H+Y4BIRGYZJLhGRjUpKSoJara4s13SPbdUkt3379lCpuBmITG/p0qUQBKHya8+ePZYOiYiI6jgmuURENsqQe2xv376NW7du6dWWiIiIyJKY5BIR2aiqK7N2dnbo2LFjtW156BQRERHVF0xyiYhsVNUkt1WrVnB1ddWrLcAkl4iIiOou3lBFRGSDioqKcPbs2cqyIYdO2dvbIywsrNYxXLhwASdOnMCtW7dw//59eHp6olWrVujevTsaNGhQ6/ErXLx4EadOncKdO3eQlZUFLy8v+Pv7o3PnzmjWrJnR5gGA3NxcHDlyBGlpacjMzER2djaUSiXc3d0REBCAsLAwBAUFGXVO0u3evXs4cuQIrly5gqysLKhUKvj4+MDPzw9du3aFr6+vUedKSEhASkoKMjIyYG9vDz8/PzRr1gzdu3eHg4OD0eaqjStXriAxMRF3797FvXv34OnpCT8/P4SFheHBBx80yZwpKSk4cOAArl+/jpKSEnh6eqJ169bo2rUr3NzcjDaPWq3G0aNHkZycjLS0NBQUFMDPzw+NGzdGjx494OnpaZR5zPm+IiIZBCIiskrTp08XAJjl6+rVq6K5NV//+eefBUEQhNLSUmHBggVCmzZtqh3L0dFRGD58uHDmzBnZ33tWVpbw/vvvCy1bttQZd2hoqPDFF18IhYWFsudKTU0VZsyYIXTt2lVQKpU1XqugoCBh+vTpQkZGRrVjZmRkCI6OjqJ+EydOlBXf+fPnJTGsWLFCUKvVQmBgoKj+wQcflDWHWq0WmjVrJhprxowZssbS9OKLL4rGffTRR/WK59dffxV69+4t2NnZVftnoVAohI4dOwofffSRcPfuXVnxlZaWCr/99psQERGh88+/QYMGwsCBA4UDBw7UOObu3bsN+vnT55qkpaUJ//nPf4SmTZvqHCswMFB49913DboemvE+/vjjla+dOHFC6Nevn6BQKLTO5+TkJAwfPlw4e/as3vNpc+HCBWH06NGCt7d3td+bSqUSHn30UeGPP/6QNYc531dEVDtMcomIrFRdS3LPnTsnhIWF6T2mvb298PXXXxv8ff/www+Cl5eXQfE3b95c+PPPPw2ap6ysTJg1a5bg7Ows65p5eXkJW7ZsqXb8Z599VtTex8dHKC4uNvh6vP/++6Jx3N3dhfz8fEEQBOHDDz+UxHX06FGD59BMchQKhZCcnGzwONoYmuTeunVL6N69u8F/Hh4eHsLSpUsNii0pKUlo166dwXMNHDhQZ/Jj7CT3m2++Mfh96u7uLnz55Zd6XYfqktxly5YJDg4Oes2nUqmEGTNmCGq1Wu/rLwiCUFRUJLz++uuCSqUy6PuLiIgw6D1qzvcVEdUek1wiIitVl5LciRMn6lxh0fX1/fff6/X9lpWVCZMnT5b9PahUKuGHH37Qa67S0lJhyJAhtb5u9vb2wqFDh7TOsXXrVkn7zZs36xVfBW2rtePHj698/cqVK5IVtsmTJxs0hyAIwpgxY0Rj6LOyqC9Dktz09HQhKCioVn8m3377rV5x/frrr3oncNq+WrRoUe3qpbGS3JKSEmHQoEG1uh4vvviiUFRUpPNaaEtyV65cWe3qra6vkSNH6p3oZmVlCY8++qjs783Pz6/an7+qzPm+IiLjUAiCIICIiKzOmjVrsGbNGq2vbdu2Dfn5+QAALy8v9O7du9pxTp8+jQsXLlSWn3jiCckhVQsXLhTdg6ZQKHTG9thjj+HZZ59FWFgYnJ2dcfv2bezevRs//vgj7t27J2rr6uqKK1euwN/fX+eYb731Fr788ktJ/UMPPYQhQ4agc+fO8PT0RGZmJk6ePInffvsNhw8flrRfu3YtBg8erHOu6dOn4+OPPxbVKRQK9O/fH9HR0XjwwQfh6emJ0tJSpKenIykpCWvWrEFSUpJkrPDwcMnp1QBQVlaGZs2aITU1tbJu6NChWL16tc7Yqtq7dy8effRRUV1CQgK6d+9eWX700Uexd+/eynLjxo3xzz//QKlU6jVHYWEh/P39kZOTU1n3008/4aWXXtI7Tl1Gjx6NZcuWieKt7lm5zz77LNauXSuqa9euHUaMGIFOnTrB19cXSqUS6enpOHr0KH7++WdcunRJ1N7JyQnnzp1DYGBgtTH9+eef6N+/P0pKSkT1np6eGDZsGPr27YuAgAAUFxcjOTkZmzdvxvr161FWViZq7+/vj2PHjqFJkyai+jNnzmD69OmV5XXr1ole79KlC5o3by76Hj/66CNJnJrXrkL79u0xfPhwhIeHw8fHB+np6Th+/DhWrlyJkydPStqPGjUKy5cvr/Z67NmzR/R3SFBQEG7fvo2CgoLKuujoaAwfPhwhISEoLCxEUlISfvrpJ63z/ec//8HMmTOrnQ8ASkpK8Mgjj+DQoUOiejs7Ozz11FPo378/QkJC4OrqirS0NMTHx2PlypW4fv26qL2HhweOHTuGFi1aVDuXud5XRGREls6yiYjIvIqKigR7e/vKFYbhw4frbF9126y9vb1e96+imtUMb29vnduCb968KbRv317Sb86cOTrn27Rpk6SPp6ensHbtWp39fvvtN8HNzU3Uz8PDQ7hy5Uq1fW7cuCFZwfP29tbrXsvly5drXf07ceKE1vb//ve/Re2cnZ2FnJycGuepMG7cOFF/bffc/vTTT5J4duzYofccq1evFvV1cXERcnNz9e5fE31Xci9fviz5Pt544w2htLS02rGLioqE8ePHS/rpWs2+ceOG0KBBA0mf5557TucW5BMnTmh9b0dERAglJSU6r4Fmn4p73HX56quvJP2cnJyEH3/8sdqVUrVaLfzwww+Ck5OTpO93331X7Vy6Vp69vLyErVu3au1XVlYmzJ49W7Liq1Qqa9w2P2XKFMlcbdu2rfZnSRAEobCwUPjggw8k/bp06VLtarW53ldEZFxMcomIbExiYqLoF6/PPvtMZ/vg4ODKth06dNBrDm2/7DZs2FCve+AuX74sSsIB8UE2moqKioQmTZpIEtVTp07pFevhw4cFV1dXUX9dib9m4glAiI2N1WsuQRCETz75RNL/iy++0Nr2woULkrb63t9XWFgoeHh41PhhQW5uruT7Hz16tN7fT0xMjKjvqFGj9O6rD32T3Llz50oS+rKyshrHLysrEx566CFR32bNmlXb/uWXX5b8mfzrX//Sa4ttdna2ZC4AwpIlS3T2MzTJzcnJkdwe4OjoKOzevbvGGAWhPGnVPPjM3d1dyMrKqra9tp95Dw8P4dixYzXOt2DBAknfJ598str2J0+elCTGHTt21PsDoO+++04y36JFi7S2Ndf7ioiMi8/JJSKyMZrPvO3UqVO1be/du4fk5OTKcm2ej/vZZ5/p9fic4OBgDBgwQFR34sSJatuvWrVKtKUXABYtWoTQ0FC94uratSs+/fRTUd3vv/+OGzduaG3/+++/i8o9e/ZEdHS0XnMBwJgxYyR1KSkpWtu2atUKDz/8sKju119/1WueTZs2ibZ+K5VKjBo1StKuQYMGku3Zf/zxBwoLC2uc4+7du4iLixPVjR49Wq/4jO3q1auicocOHWBnV/OvOXZ2dnjzzTcrywqFAmq1GpmZmZK2165dw88//yyq69ixI+bPn1/jFn2gfGvs6tWrJY/M+e9//wu1Wl1jf33NmzcPGRkZorpZs2YhMjJSr/6RkZH45JNPRHU5OTn49ttvDYrjq6++0vn3S4VXX30V/fv3F9Vt27YNly9f1tr+yy+/hFDlbjsnJyesX79e70cRvfLKKxg0aJDOMSuY431FRMbHJJeIyMYcP35cVNb1S+jx48dFv/h17txZ1px+fn4G3aOpeR9penp6tUnXwoULReUOHTpg6NChBsX38ssvi56fWVpaqvUexJKSEgwbNgzDhg3DQw89BB8fH7zwwgsGzdWoUSM0bNhQVJeXl1dte83r9tdff+HWrVs1zvPLL7+IylFRUZJ7PytoJqY5OTnYvHlzjXOsWrUKpaWlleVmzZrpvL/blDSfQXvkyBFRbLo8+eST2LJlC86dO4eCggL8888/8PLykrT7448/JGPOnj0b9vb2escZFBSE1157TVR38eJF0X3RtaV5L/4DDzyAyZMnGzTGm2++iaZNm4rqfvzxR737d+zY0aCfeW33FK9atUpSd+/ePUn9+PHjDb7X9d133xWVL1y4gP3790vameN9RUTGxySXiMjGVE1ymzVrBm9v72rbah6IJHcl99FHH9X7ICMAokN1KlQ92KhCXl4ejh49KqozNMEFAGdnZzz++OOiOm1Jh729PWbNmoVVq1bh0KFDuHv3Ll5++WWD59NccSouLq627dChQ+Hi4lJZLisrq/HwqfT0dGzfvl1Up2uFNTIyUpIk6LNirJlIv/DCC3qtaJpCSEiIqHz16lU8//zzyMrKqrGvp6cnYmJi0Lp1azg6Olbb7q+//hKVmzZtin79+hkc6/jx4yV1f//9t8HjaHP37l2cPn1aVDd69GiDfv6A8pX/sWPHiuquX78uObipOob+XISHhyMsLExUt3PnTkm7AwcOoKioSFQ3bNgwg+YCgG7duokOywO0/8yb431FRMbHJJeIyIao1WrRaaY1bSWsurVZqVSiQ4cOsuZt06aNQe3d3d0lddpWchMSEiQn1spdbda8FgcPHjTqFlIAyMjIwOrVqyUnSOuax83NTbKdeMWKFTrnWb16tejkXy8vLzz11FPVtlcoFJIV6W3btuncWnn+/HnJBwwvvviizrhMafDgwZJEYs2aNQgKCsLYsWOxfv16rR+U6EsQBEkS9Oijj+q1dVVTYGCg5EOFffv2yY6tqr1790q23cpdXde2vVnfOKOiogyeT3Nr/pEjRyTfS3x8vKisUCj02hKtSaFQSP4+07aSa+r3FRGZhsrSARARkflcuHAB9+/fryzXtDJbNcl98MEHRSuKhqjp8T+atK0GaksEz5w5I6n7/PPP8cMPPxg0H1B+v2VVubm5SE9Ph5+fn8Fj5eTkIDk5GcnJyTh//jzOnDmDxMREXLx4Uet9f9rqqnrppZdEq6bHjh3D+fPn0bp1a63tNVdYR4wYUeNK0osvvoiZM2dWxlJcXIy1a9dqXXXUNkdERARatmypcw5T8vX1xRtvvIHPPvtMVH/v3j389NNP+Omnn6BSqdC9e3c88cQTiIqKQufOnfVeeb537x5yc3NFdbW5R71Lly6i95y+K6Q1+eeffyR1cuPU9oGRPnF6enoiODjY4Pk6duwoKhcUFCAlJUW0bVrzZ16lUmHkyJEGzwWUbxOvSvP+W8D07ysiMg0muURENsSQ+3Hv378v+iWwNr/QOzs7y+6ri7aVRm1bHGszfk1JblZWFtavX4+DBw/i9OnTuHTpEtLT040WA1C+ohYUFCT6JXzFihWYNWuWpO3Fixclz//V597IFi1aoGfPnqKVul9//VVrkisIgmQ7s6UOnKpq9uzZuHTpEtavX6/19dLSUsTHxyM+Ph7/+c9/4O/vj5iYGAwePBh9+/bVeW+t5kFOQPn91XJpvq+MdSCRZpwODg6Se8D11aBBA7i4uFQ+UxvQL85mzZrJms/Hx0dSl5aWJkpyNecvKSmRPEdYruq+N1O+r4jINLhdmYjIhhiS5CYlJYlWT2uT5JpqVcPUJ5Xquu8uNTUVY8aMQePGjTF27Fj8+OOPSEhIqDHBVSqVBt8fqVAoJFuBV65cqbWt5gpr+/bt9f6z00xU9+3bp/WU6b1794pW9JydnfHcc8/pNYcp2dnZYd26dVi4cKFeB/ykpaXhp59+QkxMDB544AF8/PHHKCgo0NpWW5Lr4eEhO1bNvllZWTWu6OtDM87axKitvz4/c3Ln1Nav6s4TfeeXq7qfd1O+r4jINJjkEhFZqRkzZkChUIi+vvjiC1Gbpk2bStpUfPXs2VPUdsqUKdW21dzqay66DmwyBs0DbirExcWhdevW+Pnnn6ttU1XTpk3x3HPPYdGiRbh58yYCAgIMjmX06NGiDwuuXr0quYdQEATJ/bqGrLA+99xzcHV1FY2n7YRbzUR60KBBWu+jtgSFQoEJEyYgJSUFv/zyCwYMGAAnJ6ca+929exfTp09H27ZttT66Rtt2+dokpZon9CqVSqN8GKQZZ20TZ804VaqaNwFqnkgsdy5t85nyZ17X2KZ6XxGRaTDJJSKieqvqY3+A8l+u1Wo1BEEwype2g3f27t2L/v37S+7PBMoPzHrsscfw+uuvY+HChfjrr79w9+5d3LhxA7/99hvGjx8Pf39/WYlH8+bN8dhjj4nqNLcM79u3T/SBg729vUH3KzZo0ADPPPOMzjkKCwuxdu1aUV1d2KqsydnZGSNHjsSmTZuQkZGBLVu24PXXX0e7du109rt27Rr69OmDu3fviuq1reDV5sAhzcPH5N7vrkkzztoeiiQnTm0/G3LmAqQnkWv+zPft29doP+/6/Fwa+31FRKbBJJeIiOotzV/oi4uLcfv2bZPNV1BQgBdeeEGy4vTwww9j165dyMzMxK5duzBv3jxMmDABvXv31nqfodyti5r31q5Zs0YUi+YqbkxMjOQxKTXRTFhPnToleiRNbGysKBkJCAiQPH6prnFxcUFMTAzmzZuH06dP49atW1ixYgWGDh0qWrmucP36dcn9ztrua63Ne03zWceGHs5WHc04i4uL9XrcjTaZmZmS1U194pS7pTgtLU1Sp3l/r+bPvLEO7JLDGO8rIjINHjxFRGSl2rZtK3r0THJysuie3EcffVRrAgaUr9bFxsZWloODgyUnn1al7Rc6c9B8DAtQft9x48aNTTLf2rVrJb9UR0dHY9OmTXrfZ1tWViY7CXjmmWfg4eFRmWRmZGTg77//xuOPP155GnJV+hw4pal3795o3ry56Pv8/fffERoaCqA8sa5q1KhRsh6jY0mNGjXC888/j+effx65ubmYMWMGvvzyS1Gb3377DfPmzasse3t7i649IH2OtCE0+7Zo0UL2WFVpO9U4MTERffr0MXgsbd+fPnEmJycjPz/f4NXppKQkUdnf31+ycqv5M5+cnIycnJw6sV1ezvuKiEyDSS4RkZV67rnnRIcBvfPOO6Ikd8WKFdXeG3rgwAFRkvvqq69i8uTJpgtWJs37hoHy+2Wjo6MNHmvv3r24dOlS5TNMmzVrJjkVVdvpql9//bVBB0mdPXtW8mxffZ/H6+zsjKFDh4oekbR+/Xo8/vjj2L59u2jFzs/PT9Z1qHhm7syZMyvr1qxZg48++ggFBQXYunWrqL0ln41blSAIuHHjBs6fP49z587h1Vdf1etUWzc3N8ydOxeXL1/Gpk2bKuvT0tKQnp5e+UGQnZ0devToge3bt1e2+fvvv6FWqw1O8i9evIjU1FRRna4PkQwREREhqdu9e7esJHf37t2SOn3iVKvVOHr0KHr16mXQfJr3mGvr37NnTyxatKiyXFpail27dmHQoEEGzQWUH94mCELlz3zjxo0lf5amfl8RkWnUr49eiYhItqNHj1b+v5+fn87DjzRXcLp06WKyuGojICAAQUFBorpffvnF4HsCBUHAq6++inHjxqFPnz5o2bIl/Pz8JFs1NZ+j6e3tjZCQEIPm0pYoaztwpzqaq7MbN26EIAhYvXq1qH7kyJF6HRKkzYsvvig6BOn8+fM4f/48du7ciby8vMr67t2748EHH5Q1hzElJCSgQYMGCAwMxBNPPIHJkydLThKvyRNPPCGpq/roHECadKWkpCAuLs7geBcvXiyp6927t8HjaOPv749WrVqJ6pYuXSr5YKUmpaWlWLp0qaiuUaNG1T6bWZPm1vma7N+/H5cuXRLVafuQRlvi+9133xk0F1B+Ovro0aMxcuRI9OzZEwEBARgwYICojbneV0RkfExyiYhsgCAIOHbsWGW5pqS1apJrZ2en81FDljZmzBhROSsrC59++qlBY6xcuVJ03ykADBgwQHJKrOZJysXFxXqvwgLl92F+9dVXknpDTozt3r072rRpU1lOSUmRrLwDtTsMKjg4WLJKvm3bNtEqZm3nMKawsDDJNVy+fLlBY2geCGRnZydZbRs1apRkFW/atGkoKSnRe57k5GRJUtaoUSPJoWJVGfrIKc2fidTUVK3vO13mzp0ruW94xIgRevdfuXKl3qeuC4KADz/8UFTXoEEDDBkyRNK2WbNmknvAd+7cqlUeTQAACnNJREFUafCHDdOnT5f8uVW9vQMw3/uKiExAICIiq3f+/HkBQOXXhx9+qLN9aGhoZds2bdoYPF/VuQAIP//8s0H9d+/eLRnj6tWrWttmZGQIrq6uorYKhUJYu3atXnMlJycLXl5ekv6JiYmStn369JHEtXXrVr3myczMFB566CFJfwBCv3799Bqjwn//+19R/y5dukjKtbVkyRLRmH379hWCg4Mry05OTkJWVlat56nJiy++KIrj0Ucf1douOjpa1M7e3l5ISkrSa478/HyhRYsWov5du3bV2vb555+X/PlNmDBBUKvVNc6TnZ2t9T0wa9Ysnf1cXFxE7b/99lud7bOysoQGDRqI+jg6Ogq7d++uMUZBKP/5c3R0FPV3cHAQrly5Um17be/rRx55RCgoKKhxvtmzZ0v6vvvuu9W23759u6S9j4+PcOHCBb2+v/Xr1wsKhULUv1GjRsL9+/clbc31viIi42KSS0RkA1asWCH6RWvTpk3Vtr1//76gVCor244cOdLg+cyZ5AqCIMydO1fSXqlUCrNnzxaKi4ur7Xfw4EEhICBA0nf48OFa23/66aeStgEBATX+cr1jxw5Rgqj51b17d72uS4XU1FTRn5Hm14IFCwwaT5ucnBxRcqVSqURzDB06tNZz6EPfJDcuLk5yHRo1aiTs27dP5/hZWVnCk08+Kem7ePFire2Tk5MFT09PSfuhQ4cKd+/erXaeU6dOCR07dpT0a9WqlVBYWKgzxgceeEDUZ+LEiTrbC4IgfPnll5K5nJychMWLF1ebkKvVamHx4sWCk5OTpO/06dOrnau6JBeAEBkZKaSkpGjtV1RUJEydOlXSx9/fX8jMzNT5/Q0YMEDSz9vbW+ffbYIgCD/99JMkgQcgLFq0SGt7c72viMi4mOQSEdmAyZMni37RSk1Nrbbt/v37RW2//vprg+czd5IrCILw9NNPa/0lOygoSHj//feFrVu3ComJiUJCQoLw888/C08//bRgZ2entX11K5S3bt2SrJABEFxcXIRXXnlF+OOPP4SjR48KiYmJwvbt24VPPvlE6Ny5s6S95spzYGCgQddHEAQhJiZG6/fr6OgoZGRkGDyeNiNHjqw2edF3Bbu29E1yBUEQBg0aJIlToVAIUVFRwrfffivs2bNHOH78uHDo0CFh3bp1wpQpUwRfX19Jn86dOwulpaXVzrN+/Xqt18TT07PyfXD48GFh//79wi+//CI8++yzkg8JAAju7u7C6dOna7wGPXr0EPVzcHAQPv/8c+HIkSPC4cOHhfj4eK39Bg4cqDXO9u3bC3PmzBF27NghJCYmCjt27BA+++wzoUOHDlrbR0VF6bweupJcAIKbm5vw2muvCZs3bxaOHj0q7Nq1S/j000+Fli1bStoqlUrhzz//rPGaZGZmCoGBgVrn69Gjh/Dll18Ku3btEo4fPy7s2bNH+Oqrr7T+LAIQBg0apHMuc72viMh4mOQSEdmARx55pPIXrcaNG+ts+80334h+MatpxUIbSyS59+/f1/rLqCFfzZs3r3FV9vvvv6/VHG+88YawbNkyyS/Md+7cMegarV27Vuv4zz33nEHj6LJz506tczRu3Nhsv6wbkuTevXtXtNVe7nvg2rVrNca1dOlSwcHBQfY8/v7+wuHDh/W6Bu+8847OsRo1aqS1nzF+Jvr37y/k5eXpjE/bz+uzzz5r8FwqlUpYuXKlXtdEEAThypUrQps2bWr1/fXp00fIzc3VOY8531dEZBxMcomIrFxZWZlo9XHAgAE621dNKuzs7Gr8BVcbzV/wzJHkCkL5dsuPP/5Ycg+jPl8xMTHCzZs39Yrv888/17oyp+srODhY2L59uyAIgnDx4kXJ68uWLTPoGhUVFQne3t6ScbZt22bQOLqo1WqhefPmkjl03S9pbIYkuYJQnpBo3kep71e/fv107nLQtG/fPqFVq1YGz/P000/r/V4TBEFIT08XGjVqpHPM6j4kUavVwkcffSQ4OzsbFKOLi4vwxRdfCGVlZTXGV93P69SpU7XultD21aJFC+HAgQN6X5MK2dnZwvDhwyX32Nb0pVKphLfeeksoKirSax5zvq+IqPaY5BIRWbkzZ86IfuH66KOPdLavumLRtm1bWXNq/pJnriS3wu3bt4W3335bcuiLtl90BwwYICsxPHz4sDBw4ECd98aqVCohIiJC+PHHHyW/TGtunQwPDzc4htdff100RpMmTYy+wvqf//xH8n2dOXPGqHPoYmiSW2HLli3CgAEDBHt7e53vAXt7eyEmJkb2hwOlpaXCkiVLhG7duulM6FxdXYXnnntOViInCOX3AmtuW676tWPHDp39U1NThTfeeENo2rSpzusRFBQk/Oc//zFoZ4Gun9d9+/YJjz76aLVJ6IMPPih8/fXXNd6XXJMTJ04II0aMkBwip/nl7u4ujB8/Xq9t4tqY631FRLWjEARBABERWa3ly5fjxRdfrCzHxsZqff4kABQUFMDNza3ymZqjRo0y+JEZdc3ly5dx8uRJ3L17FxkZGXBwcEDDhg3x4IMPonPnznB2dq7V+Dk5OTh8+DAuX76M7OxsKJVK+Pj4ICAgAD169ECDBg2M9J1YxsqVK/H8889Xlrt27YrDhw9bMCLDFBQU4NSpUzh37hyysrKQl5cHlUoFHx8ftGrVCl26dIGLi4tR5srMzERCQgJu376N9PR0AOXPUm7bti3Cw8Ph5ORU6zlOnjyJI0eOIC0tDQDg6emJwMBA9OjRAw0bNtRrjLNnz+LMmTO4c+cOsrOz4eLigiZNmqBjx46ynnu8Z88eyXN+r169isDAQFH5yJEj+Oeff1BWVobGjRujS5cuosdhGYNarcaxY8dw+fJlpKen4969e3B1dYW3tzfat2+P0NBQgx/JpI0531dEZDgmuUREVu7u3buVvxADQEhICBwdHbW2LS4uxsWLFyvLfn5+8PPzM3mMVHc9/fTT2LRpU2V54cKFmDBhggUjorpGnySXiMicVJYOgIiITMvX1xe+vr56tXVwcEBoaKiJI6L6IiMjA9u2bassu7i4YPjw4RaMiIiIqGZ2lg6AiIiI6qbly5ejpKSksjx06FB4eHhYMCIiIqKaMcklIiIiifv372PevHmiuldffdVC0RAREemPSS4RERGJ5OTk4LnnnsP169cr6yIjI9G5c2cLRkVERKQf3pNLRERkw06dOoW3334bbdu2hZOTE1JSUrB161ZkZmaK2s2cOdNCERIRERmGSS4REZEN8/f3x59//ok///yz2jbjx49Hz549zRgVERGRfNyuTEREZMP8/Pzg6upa7eu9evXC119/bb6AiIiIaolJLhERkY3T9jxTe3t7vP7664iLi4Ozs7P5gyIiIpJJIQiCYOkgiIiIyHIyMjKwb98+XLlyBcXFxQgMDESfPn30fr4yERFRXcIkl4iIiIiIiKwGtysTERERERGR1WCSS0RERERERFaDSS4RERERERFZDSa5REREREREZDWY5BIREREREZHVYJJLREREREREVoNJLhEREREREVkNJrlERERERERkNZjkEhERERERkdX4Py5nnIdySg6VAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "envelope_errors = [(check_fitted_isotope_envelope(ana_apo_1, tp), tp) for tp in all_tps]\n", "envelope_errors = sorted(envelope_errors, key=lambda x: x[0], reverse=False)\n", "\n", "# you can plot the fitted isotope envelope and the experimental data\n", "check_fitted_isotope_envelope(check_ana_obj, envelope_errors[300][1], if_plot=True)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Count')" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHwCAYAAAAYQv/tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABK50lEQVR4nO3dd3hUVeL/8c+kUkwCoTepLi30Ir0sZZHQRUVEQERXEHYBG+WrYllhXZFFXYooCKKAdBEQpYMUIQgoTVgCiGl0AoEUMr8//GWWm5kkM3NnMpC8X8+T5+Gcuack+pAP5957jsVqtVoFAAAAuMnP1xMAAADAvY1ACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwJcDXE0DeZrFYsvwsKCgoF2cCAACclZKSkuVnjjYIsrBtELwpu0AJAADuPY6iI7e8AQAAYAqBEgAAAKYQKAEAAGAKgRIAAACm8JY3fIa3vAEAuDtl95a3IwRKeFVQUJDD/ymDgoKUnJzsgxkBAICcBAcHZ/n72xFueQMAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMCUAF9PAMiPKo1d4+spuOz05EhfTwEAcJdihRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgSoCvJwDg3lBp7BpfT8FlpydH+noKAJAvsEIJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUbvrggw9ksVhsXxMnTjTV38aNGzVs2DDVr19fxYsXV2BgoEJCQlSrVi09+eSTWrZsmdLS0jwy9+TkZH3++ed64okn9Kc//UlhYWEKDAxUeHi4mjRpor///e/auXOnR8YCAAB5n8VqtVp9PYl7zdGjR9WoUSPdvHnTVvf666+7FSqjoqI0dOhQHThwIMdrK1eurI8++khdu3Z1eZwMCxcu1KhRo5SQkJDjtW3bttXMmTNVo0YNt8cLDg5WSkqKXX1QUJCSk5Pd7vdeV2nsGl9PIV84PTnS11MAgHuSq7+/WaF0UWpqqgYMGGAIk+764osv1KxZM6fCpCRFR0crMjJSb7zxhstjWa1WPf/88+rfv79TYVKStm7dqiZNmmjt2rUujwcAAPKPAF9P4F7z+uuva//+/ab7Wb58uQYOHKj09HRDfVBQkOrXr6+SJUsqLi5Ohw4dsvsXwsSJE1W4cGG9+OKLTo83evRoTZ8+3a6+aNGiioiIUEhIiKKjo3X06FHD59evX1efPn20YcMGtWrVyoXvEAAA5BesULpgx44d+uc//2m6n+joaD311FOGMOnv768JEyYoNjZWe/bs0erVq7V3716dO3dOr7zyivz8jP+pxo0bp3379jk13rJlyzRt2jRDXdGiRfXZZ58pLi5O27Zt05o1a3TkyBEdOXJE3bt3N1ybnJysfv366fr1625+xwAAIC8jUDopMTHR4YqiO1588UVdu3bNVvbz89OSJUv09ttvKzw83HBtiRIlNHnyZK1YsUIBAf9bUE5LS9Mrr7yS41g3b97UqFGj7Pr88ccfNWjQIAUFBRk+q1mzpr7++mu9/PLLhvrff/9dU6dOdfZbBAAA+QiB0kl/+9vfFB0dbbqfn376ScuXLzfUTZgwQb179862XY8ePfT+++8b6jZt2qRNmzZl227mzJk6d+6coW7hwoWqVq1atu0mT56svn37GuqmTJmiS5cuZdsOAADkPwRKJ6xYsUKfffaZrVy3bl2VLVvWrb5mzJhhKBctWlRjx451qu2IESNUr149Q52j5yLvNHPmTEO5c+fO6tChQ45jWSwWffDBBwoODrbVXb16VV9++aVTcwUAAPkHgTIHcXFxevbZZ23loKAgff755woMDHS5r9u3b2vJkiWGuieeeEKFChVyqr3FYtFzzz1nqFu3bp2SkpIcXr9//379+uuvhro7v5eclClTRr169TLULV261On2AAAgfyBQ5mDIkCG6cOGCrfzmm2+qbt26bvX1448/6sqVK4a6zC/A5CTz9UlJSVq3bp3Da9evX28oBwYGqkuXLqbG2759u9PbDgEAgPyBQJmN6dOnG8Jay5Yt9dJLL7nd344dOwxlPz8/NW/e3KU+ypUrp/vvv99Qt2XLFqfGq1+/vgoXLuzSeC1atDCU09PTtX37dpf6AAAAeRuBMgvHjx83hMf77rtP8+fPt9u+xxWHDx82lKtUqaKQkBCX+6lTp46hHBUV5dR4mZ+/dEblypV13333OTUeAADInwiUDqSlpWnAgAGGZxOnTJmiKlWqmOo386bhf/rTn9zqJ/Mb2idPnrS7JikpSWfPnvXIeFWrVs1xPAAAkH8RKB148803DZuGd+3a1aWXWbISExNjKJcrV86tfsqUKWMonz9/3u7FnNjYWGU+pt1T4505c8atfgAAQN5EoMxk9+7deuedd2zlYsWK6dNPP/VI35lfZilVqpRb/ZQoUcKu7uLFi4ZyXFyc3TWeGu/Ol5QAAAAIlHe4ceOGBgwYoNu3b9vqZsyYodKlS5vuOzEx0e5M7tDQULf6cvTc5eXLlw1lRxuQe2q8zGMBAID8LSDnS/KPUaNG6b///a+t/MQTT+iRRx7xSN/Jycl2dc7uP+lMu1u3buXaeJnHciQ5OdnhHAAAQN7DCuX/9/XXX+uTTz6xlcuXL6+PPvrIY/07Cld3ns3tCn9/f7u61NTUXBsv81iOTJo0SWFhYXarsgAAIO8hUOqPZxuHDh1qK1ssFs2dO1dFihTx2Bh33kbP4CgYOsNRu/T09FwbL/NYjowbN05Xr15VUFCQW2MCAIB7B7e8JQ0dOlTnz5+3lZ9//nl17NjRo2M4OqoxLS3Nrb4crRDeeea2t8fLPJYjwcHBTl0HAADuffl+hfLjjz/W6tWrbeXq1avr3Xff9fg4jsKVu7eDnQmU3hyPoAgAAO6UrwPlyZMnNWbMGFs5ICBA8+fPV8GCBT0+VmhoqCwWi6Hu+vXrbvWVmJhoV5f5SMWwsDC7azw1nqvHNwIAgLwt3wbK27dva8CAAbpx44atbvz48WratKlXxgsICLDbtufKlStu9eWoXeY9JosVK+ZUO3fGc3c/SwAAkDfl22coly1bpj179hjqDh48qL59+zrV/s5nLiXpq6++0i+//GKoGzFihNq1a2crly1bVlevXrWV4+PjXZy143YFChSw2yuybNmyObZzdzwCJQAAuFO+DZSZjyqUpFWrVrnd39GjR+3O6u7WrZuhXLVqVcM1mc/adlbmow8zn7UtSSVLllRISIjhdrWnxjN7pjkAAMhb8u0tb1+oXbu2oXz8+HG3+sncLnO/GWrVqmV6vBs3bujcuXNOjQcAAPInAmUuatKkiaEcGxurmJgYl/pITU3VwYMHDXUNGzZ0arx9+/a5NJYk7d+/X1ar1anxAABA/pRvA+XgwYNltVrd/qpYsaKhv9dff93umsGDBxuuadOmjfz8jD/yjRs3ujTv7du3252Ck9WemXc+vylJJ06c0G+//ebSeN9//72hHBYWpsaNG7vUBwAAyNvybaD0hRIlStitGi5atMilPhYuXGgolylTRg0aNHB4badOnexOqnFlPKvVand9ly5d3D5xBwAA5E0Eylw2cOBAQ3ndunWKiopyqm10dLQWLFhgqBsyZIjdqmeG0NBQ9ezZ01D373//2+n9KBcvXqwTJ04Y6u48ohIAAEAiUOa6J598UuHh4bay1WpVv379dOHChWzbJSUl6ZFHHtGtW7dsdQULFtRzzz2Xbbu///3vhnJMTIwGDRqU43ncx44d0/Dhww11devWVYcOHbJtBwAA8h8CZS4LCQnRhAkTDHUnT55Ux44ddfLkSYdtYmNj9dBDD9mtZI4ePVrly5fPdryWLVuqe/fuhrrly5erf//+Dk/ckaQ9e/aoc+fOunz5sqH+X//6l91pPwAAAPl2H0pf+vvf/64VK1Zox44dtrqDBw+qXr16evLJJxUZGamyZcsqISFBGzdu1Jw5c+zCXYMGDfTaa685Nd7MmTO1c+dOXbx40Va3ePFibd++Xc8++6xatGihokWL6syZM1q2bJmWLFmitLQ0Qx/Dhg1T586dTXzXAAAgryJQ+oC/v79WrVqljh076qeffrLVJyUladasWZo1a1a27StVqqQVK1YoODjYqfHKli2r7777Th07djQE05iYGE2cODHH9l26dNHUqVOdGgsAAOQ/3PL2kfDwcG3YsMHuNJ2ctGjRQtu3b7fbtignDRs21MaNG+02O8/J0KFDtWrVKqfDKwAAyH8IlD4UHh6u1atXa+XKlWrdunWWb2tLUkREhGbPnq3t27fn+NxkVho0aKADBw5oypQpqlmzZpbXWSwWde7cWRs2bNDs2bPtth4CAAC4k8Wa+RgU+ExCQoJ2796t2NhYXbx4UYUKFVKZMmXUtGlTVa5c2ePjHT9+XIcOHVJcXJwSExMVFhamihUrqkWLFoY30c0IDg5WSkqKXX1QUJDdBu35SaWxa3w9hXzh9ORIX08BAO5Jrv7+5hnKu0jJkiXVo0ePXBuvevXqql69eq6NBwAA8iZueQMAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMIVACAADAFAIlAAAATCFQAgAAwBQCJQAAAEwhUAIAAMAUAiUAAABMCfBGp/Pnz7f9uVKlSmrTpo1H+j19+rRmz56tQ4cO6eDBg1q8eLGaN2/ukb4BAADgHq8EysGDB8tisUiSHn74YY8FynPnzmnSpEm2vk+cOEGgBAAA8DGv3fK2Wq2yWq0e7TM0NNTWtySdP3/eo/0DAADAdV5ZoZRkW0X0pNOnTxv6Tk5O9vgYuPdUGrvG11MAACBf81qg9KRbt27p8OHDGj9+vKQ/VigtFottxRIAAAC+41KgvHXrlmrVqqUzZ87keG3Gbelly5bJ39/fvdk5YLFYbH3XqFHDY/0CAADAPS49Q1mgQAF9+OGHtucjs/q6U07XuvqVITw8XK1bt/bMTwEAAABuc/mlnMjISPXq1UvSH6uFjr7ulNU17n5l3O7+8MMPFRwc7JEfAgAAANzn1lveH3zwgQoXLuyTFcrSpUtrwYIF6tevn0d+AAAAADDHrZdyypcvr3Xr1um///2v3WdWq1VDhgyxrVQ2btxYw4cPd2tyFotF/v7+Cg4OVtGiRXX//ferWrVqXnmDHAAAAO5x+y3vVq1aqVWrVg4/GzJkiO3PFStW1KBBg9wdBgAAAHc5r20b5OlNzQEAAHB38kqgvHNFskmTJt4YAgAAAHcJrwTKuXPneqNbAAAA3IW8dpY3AAAA8gcCJQAAAEwhUAIAAMAUr73lnSElJUXLli3T6tWrdeDAASUkJOjGjRtKS0tTenq62/1aLBalpaV5cKYAAABwh1cD5Zo1azRixAidPXtWElsJAQAA5EVeC5SLFi3SwIEDdfv2bVuQ9NQJNwRTAACAu4dXAmVsbKyeeeYZpaWlyWKx2IIkQRAAACDv8UqgnDhxom7cuGEXJJs1a6bmzZurQoUKuu+++xQYGOiN4QEAAJCLPB4ob9++raVLlxrCZLly5bRgwQK1bdvW08MBAADAxzweKHft2qXLly/LYrHIarUqKChIq1evVv369T09FAAAAO4CHt+H8tSpU7Y/WywWPfroo4RJAACAPMzjgTIuLk7S/56b7NWrl6eHAAAAwF3E44Ey89ZAFStW9PQQAAAAuIt4PFCWKlXKUE5OTvb0EAAAALiLeDxQ1q1bV9L/ViqPHTvm6SEAAABwF/F4oKxfv77Kli1rK69atcrTQwAAAOAu4vFAKUnDhg2T1WqV1WrVmjVrdODAAW8MAwAAgLuAVwLlmDFjVLlyZVksFqWnp6t///66ePGiN4YCAACAj3klUBYsWFDLly9XSEiIpD+eo2zUqJGWL1+u9PR0bwwJAAAAH/HKWd6SVK9ePW3ZskW9evXSb7/9prNnz+qRRx5RyZIl1axZM9WtW1fh4eEKDQ2Vv7+/W2MMHDjQw7MGAACAqyzWjB3IPSg8PNz255SUFCUlJdmOYpTs96p01+3btz3SD7wnODhYKSkpdvVBQUEe21Kq0tg1HukHec/pyZG+ngIA3JNc/f3tlRXKK1eu2P58Z3jM+LMnMqynQikAAADM8dotb0dBMquyq7ywqAoAAAA3eS1QEvoAAADyB68ESt7kBgAAyD+8sm0QAAAA8g+v3fIGAF+7F3cA4M10APciVigBAABgCoESAAAAphAoAQAAYIpXnqE8e/asN7q1c//99+fKOAAAAMiaVwJlpUqVvH6SjcViUVpamlfHAAAAQM7Y2BwAAACm5MrRi55CSAUAALj73PUrlHcG02rVqqlYsWIe6RcAAACe4ZVAuXnzZrfapaam6ubNm0pISNCxY8e0detW7du3TxaLRVarVUlJSVq0aJEaNmzo4RkDAADAXV4JlG3btvVYX/v27dOQIUP0yy+/KCYmRp06ddLWrVsVERHhsTEAAADgvrt+H8rGjRvrhx9+UN26dWWxWHT58mU9/PDDSk5O9vXUAAAAoHsgUEpSSEiIFixYIIvFIovFopMnT2rq1Km+nhYAAAB0jwRKSYqIiFDPnj1ltVpltVr10Ucf+XpKAAAA0D0UKCWpZ8+etj/HxsYqKirKh7MBAACAdI8Fypo1a0r631ZChw4d8uV0AAAAoHssUKanpxvKCQkJPpoJAAAAMtxTgfLUqVOGcmBgoI9mAgAAgAz3VKBcunSppP+dwlOmTBlfTgcAAAC6hwLl5s2btXLlSsNRjLVr1/bhjAAAACDdA4EyLS1N8+bNU/fu3Q31FStWVN26dX00KwAAAGTwytGLb775pttt09PTlZKSouvXrysuLk7bt29XQkKCrFar7Uxvi8WiAQMGeHDGAAAAcJdXAuXEiRMNt6bNyHhe8s7+SpUqpRdeeMEj/QMAAMAcrwTKDBlh0Iw7g6TValWBAgW0cOFChYWFme4bAAAA5nn1GcqMs7fd/ZJkO2rRarWqdevW2rlzp9q2bevNaQMAAMAFXlmhvP/++03d8rZYLAoMDFRISIhKly6tRo0aqUePHmrUqJEHZwkAAABP8EqgPH36tDe6BQAAwF3ort82CAAAAHc3AiUAAABMIVACAADAFAIlAAAATPHqPpSObNu2TVu3btX27dt15swZXbp0SZcvX5a/v78KFSqkUqVKqUqVKqpfv77at2+vP//5z/L398/taQIAAMBJFqsndh/PQXp6uubPn69//vOf+vXXX231WQ1955ZDpUuX1siRI/XCCy8oMDDQ21OFhwUHByslJcWuPigoSMnJyR4Zo9LYNR7pB7gbnJ4c6espAIDLv7+9fss7Li5O7dq109NPP63jx48bNirPakPzO6+JjY3VhAkTVK9ePR07dszb0wUAAICLvBoojx07poYNG+qHH35wGCDvDI7ZBU2r1apjx46pefPm2r9/vzenDAAAABd57RnKixcvqlu3boqLi7M7SlGSKlWqpMaNG6tkyZIKCwtTWlqarl69qtjYWEVFRSkmJkaSDG2vXr2q7t27KyoqSqVLl/bW1AEAAOACrwXKZ555RqdOnTIEyZCQEI0YMULPPvusKlasmG37EydOaPbs2ZoxY4Zu3Lhh6ycuLk7PP/+8li1b5q2pAwAAwAVeeSln9+7datGihe12tSQ1bdpUixYtUqVKlVzq69SpU3r88ce1d+9eW38Wi0U7d+7Ugw8+6Omp2yQnJ2vlypXaunWr9uzZo7i4OF26dEl+fn4qVqyYypUrp1atWqljx47q3LmzqbPLJWnjxo1aunSpdu3apXPnzunq1asqUKCAKlSooEaNGqlXr17q2bOnAgLM/xsgOTlZX331lb799lvt3btX8fHxSkpKUkhIiKpWraoWLVroscceU4sWLUyPxUs5gGt4KQfA3cDV399eCZR9+vTRypUrbSGrbt262rZtm0JCQtzq79q1a2rbtq0OHTpkC5SPPfaYvvzyS09OW5KUlpamKVOm6P3331dCQoJTbWrVqqU333xTDz/8sMvjRUVFaejQoTpw4ECO11auXFkfffSRunbt6vI4GRYuXKhRo0Y59b21bdtWM2fOVI0aNdwej0AJuIZACeBu4PO3vFNTU7VhwwbbaqK/v78+//xzt8OkJIWGhurzzz+Xv7+/rd9vvvnG4Tdqxu+//67WrVtr7NixTodJSTpy5Ij69u2rYcOGuTSnL774Qs2aNXMqTEpSdHS0IiMj9cYbbzg9Rgar1arnn39e/fv3d/p727p1q5o0aaK1a9e6PB4AAMg/PB4od+/erevXr0v644Wa3r17KyIiwnS/ERER6t27t+0W+o0bNzz6xvelS5fUqVMn7d692+6zwMBANW7cWN26dVPnzp31pz/9yWEfM2fO1JAhQ5wab/ny5Ro4cKDS0tIM9UFBQWratKm6deumxo0bKygoyK7txIkT9d577zk1TobRo0dr+vTpdvVFixZV69at1bVrV9WsWdPu8+vXr6tPnz7asWOHS+MBAID8w+OB8uzZs5L+9zZ39+7dPdZ3jx49DOUjR454rO+BAwfq6NGjhrpSpUppxowZunz5svbu3avVq1dr/fr1On78uE6fPq3hw4fbPTv5xRdf5Bj2oqOj9dRTTyk9Pd1W5+/vrwkTJig2NlZ79uzR6tWrtXfvXp07d06vvPKK/PyM/6nGjRunffv2OfW9LVu2TNOmTTPUFS1aVJ999pni4uK0bds2rVmzRkeOHNGRI0fs/pslJyerX79+tn8oAAAA3MnjgTLz7dQqVap4rO+MvjJC3MWLFz3S77fffqs1a4zP4UVERCgqKkrPPfecChcubNemYsWK+s9//qOVK1faneDz5ptvZntb+cUXX9S1a9dsZT8/Py1ZskRvv/22wsPDDdeWKFFCkydP1ooVKwwv5KSlpemVV17J8Xu7efOmRo0aZdfnjz/+qEGDBtmtgNasWVNff/21Xn75ZUP977//rqlTp+Y4HgAAyH+88gzlnRzdsnWXt45enDJliqEcEhKir7/+WuXKlcuxbY8ePezaJyYmatasWQ6v/+mnn7R8+XJD3YQJE9S7d+8cx3n//fcNdZs2bdKmTZuybTdz5kydO3fOULdw4UJVq1Yt23aTJ09W3759DXVTpkzRpUuXsm0HAADyH48HymLFihnKmcOMGRl9ZdxOL168uOk+z58/r82bNxvqhg8frsqVKzvdx/Dhw+1WYlevXu3w2hkzZhjKRYsW1dixY50aZ8SIEapXr56hztFzkXeaOXOmody5c2d16NAhx7EsFos++OADBQcH2+quXr3qlTfrAQDAvc3jgbJ8+fKS/ndb+vvvv/dY35n78sRpOdu2bdPt27cNdY899phLffj7+9s933ngwAFl3pHp9u3bWrJkiaHuiSeeUKFChZwax2Kx6LnnnjPUrVu3TklJSQ6v379/v3799VdD3bPPPuvUWJJUpkwZ9erVy1C3dOlSp9sDAID8weOBsnnz5vL395f0x0riokWLPHKb9OLFi1q4cKEtqPr5+al58+am+838Yk9QUJDdKqAzMq9Qpqam2n3fP/74o65cuWKoc/WlpczXJyUlad26dQ6vXb9+vaEcGBioLl26mBpv+/btLm2pBAAA8j6PB8rQ0FA1a9bMtjp35coVjRgxwnS/I0aMsIUxi8WiJk2aqEiRIqb7bdiwoUaOHKm+ffuqRYsWatCggd0b1c64detWjtdk3nrHnVBcrlw53X///Ya6LVu2ODVe/fr1Hb5glJ3Mp+Wkp6dr+/btLvUBAADyNq+c5T1y5Ej98MMPtk3IFy9erKJFi+qDDz6wrV466/bt2/rb3/6mxYsXG45edOXWbXYiIyMVGWn+ZIrDhw8bysHBwXbPk2a+pkqVKm5t+F6nTh3b9kzSH6ftODMnd1ZeK1eurPvuu8+wZVBUVJRbpwIBAIC8yeMrlJLUt29f1apVS5JsIXDmzJl68MEHXXqmcv369WratKnhxRKLxaI//elPGjRokMfn7a7k5GS7bYdq165td13mfS6z2iA9J5nf0D558qTdNUlJSYbQaWa8qlWr5jgeAADIv7yyQunn56cvvvhCDz74oFJTU22hcv/+/erSpYsqVKigtm3bqmHDhipdurTCwsJktVp17do1xcXFKSoqSlu3btW5c+dst84z+ggODtann35qt6G4L82dO1cXLlww1GV+SUeSYmJiDGVntiVypEyZMoby+fPnlZSUZHi5JzY21u6lIDPjHTx40FY+c+aMW/0AAIC8ySuBUvrj9uqcOXP01FNPKS0tzRYIrVarzp49qwULFmjBggVZtr8zDGW0laSPP/7Y7rk+Xzp//rxeffVVQ52fn58ef/xxu2szv8xSqlQpt8YsUaKEXd3FixcNgTIuLs7uGk+Nlzk8AwCA/M0rt7wz9O/fX6tXr1bhwoVtzz5mfGWEy6y+Ml9bpEgRrVixQk8++aQ3p+yS9PR0DRkyxC5g9e/f3+72cmJiolJSUgx1oaGhbo3r6LnLy5cvG8qO3qz31HiZxwIAAPmbVwOl9MdG2keOHNHQoUPl7+/vMDA6+sq4LiAgQE888YT279+vnj17enu6LnnllVf0zTffGOrCw8P17rvv2l2bnJxsV+fs/pPOtMv8lrk3x3Pmjfbk5GTD8ZIAACDv8nqglP7Y7Pzjjz/WiRMnNGXKFEVGRuq+++7LcnUyNDRUXbp00TvvvKNTp07p888/V6VKlXJjqk57++239d577xnqLBaL5syZY/eMo+Q44N15NrcrHL0pn/nIS2+Ol3ksRyZNmqSwsDC7VVkAAJD3eO0ZSkcqVqyo0aNHa/To0ZL+OMrv4sWLunjxotLT0xUeHq6iRYuqWLFid9VLN5lNmjTJ7rlJSXrjjTeyXEXNfBqP5DgYOsNRu/T09FwbL/NYjowbN05jxoxRiRIlCJUAAORxuRooMwsLC1NYWJjdKTN3K6vVqpdeeklTpkyx++z55593GDIzBAYG2tWlpaW5NQ9HK4R3nrnt7fEyj+VIcHCwU9cBAIB7n08DZWapqakOg9DdIDU1VUOHDtX8+fPtPhs2bJg+/PDDbNs7Clfurtw5Eyi9OR5BEQAA3Mmjz1CeP39eX3/9tdvt//Of/6hKlSoaO3asDh065MGZmXPp0iV16tTJYZh84YUXNH369Bxv0YeGhtpdc+fpM65ITEy0q8t8pGJYWJjdNZ4az9XjGwEAQN7mkUB57Ngx9e3bV+XLl9fgwYPtNtR21qZNm3T69Gn961//UoMGDdSnTx+fB8sTJ06oWbNm2rp1q91nkydPtnsxJysBAQF22/ZknE3uKkftMu8xmfnYR0+O5+5+lgAAIG8yFSjT0tI0evRo1a1bVytWrFBqaqquXr2qAwcOuNxXenq6tm3bZtgyaNWqVWrUqJEmTpzodkg1Y8uWLWrWrJlOnDhhqA8MDNS8efP0yiuvuNRf2bJlDeX4+Hi35pW5XYECBez2isw8lifHI1ACAIA7uR0oExIS1K5dO33wwQdKS0szBD5Hq3k5iYqKsu1beOdelLdv39Zbb72lDh06uH3L1h3z589X586d7TYIL1KkiNavX6+BAwe63GfmM7Ezn7XtrMxHH2buV5JKlixpFzI9Nd698hIVAADIHW4FymvXrqljx47atWuXw1Nttm3b5nKfFy5cUPny5W2rk5IxWG7dulU9evRwuL+ip02ZMkWDBw+2exmlcuXK2rlzp9q3b+9Wv7Vr1zaUjx8/7lY/mdtl7jdDrVq1TI9348YNnTt3zqnxAABA/uRWoHzkkUf0yy+/SJLtRROr1aqgoCA98cQTGjVqlMt9PvTQQzp79qx++eUXjRw50rbxecYYGaFy6NCh7kzZaZMmTdKLL75od4u9WbNm2rNnj2rWrOl2302aNDGUY2NjFRMT41IfqampOnjwoKGuYcOGTo23b98+l8aSpP3799v9LLIaDwAA5E8uB8q5c+fq+++/N7yxbLVaNXjwYJ04cUKff/652rRp4/aEatWqpWnTpik6Olr9+/e3C5Vffvml1q5d63b/2fnwww81fvx4u/pevXpp06ZNKlGihKn+27RpIz8/449848aNLvWxfft2u1Xajh07Ory2Xbt2hvKJEyf022+/uTTe999/byiHhYWpcePGLvUBAADyNpcCZVJSksaOHWtYlSxYsKCWLVumOXPmqHz58h6bWHh4uBYsWKAZM2bY6jJC5ciRIz3+ks4333zjcGX1mWee0bJly1SwYEHTY5QoUcJu1XDRokUu9bFw4UJDuUyZMmrQoIHDazt16qSgoCC3x7NarXbXd+nSxe0TdwAAQN7kUqBcsmSJzp8/L+mPsBEYGKgVK1aod+/eXpmcJP31r3/VtGnTDAHy9OnTWr16tcfGOHv2rAYMGGB3pOCwYcP08ccf260qmpH5ZZ5169YpKirKqbbR0dFasGCBoW7IkCFZzi80NNTuKMh///vfTr/ctHjxYrs33L39yAEAALj3uJSU5s6dK0m2F3HGjBmjTp06eWVidxoxYoQiIyNt40rSxx9/7LH+//rXv+rq1auGusjISH300UceGyPDk08+qfDwcFvZarWqX79+unDhQrbtkpKS9Mgjj+jWrVu2uoIFC+q5557Ltt3f//53QzkmJkaDBg3K8TzuY8eOafjw4Ya6unXrqkOHDtm2AwAA+Y/TgTIlJUW7du2yBbrChQtrwoQJXptYZpMnTzbcat+2bZtHbnt/++23+vbbbw11ZcqU0fz58z26MpkhJCTE7ud28uRJdezYUSdPnnTYJjY2Vg899JDdSubo0aNzfMygZcuW6t69u6Fu+fLl6t+/v8MTdyRpz5496ty5sy5fvmyo/9e//pXjiUAAACD/sVidTGV79uxR8+bNbYFi4MCBthXL3PLnP/9ZW7ZskfTH85T79u3L8vlBZ7Vv397Wp6dFR0erUqVKdvW3b99Wu3bttGPHDkN9oUKF9OSTTyoyMlJly5ZVQkKCNm7cqDlz5tiFuwYNGmjXrl1OnasdExOjunXr6uLFi4b6smXL6tlnn1WLFi1UtGhRnTlzRsuWLdOSJUuUlpZmuHbYsGGaPn26k9/5/wQHBzs8QzwoKMhjW0BVGrvGI/0Ad4PTkyN9PQUAcPn3d4CzHWesnmXcdm7VqpWJabqnY8eOhvD366+/mgqUsbGxXguT2fH399eqVavUsWNH/fTTT7b6pKQkzZo1S7Nmzcq2faVKlbRixQqnwqT0R3D87rvv1LFjR0MwjYmJ0cSJE3Ns36VLF02dOtWpsQAAQP7j9D3dzCtk1apV8/hkcpIRHjNWSTOfYuMqd0708ZTw8HBt2LBB3bp1c6ldixYttH37dlWsWNGldg0bNtTGjRvtNjvPydChQ7Vq1SqnwysAAMh/nA6UGcciZihSpIin55Kj4sWLG8pXrlwx1V/mE2ByW3h4uFavXq2VK1eqdevW2T6zGRERodmzZ2v79u1ub8/UoEEDHThwQFOmTMl2g3aLxaLOnTtrw4YNmj17tt3WQwAAAHdy+pZ35n0Y73zbOLcEBBinazbovPjii3rxxRdN9eEJPXv2VM+ePZWQkKDdu3crNjZWFy9eVKFChVSmTBk1bdpUlStX9shYgYGBGjNmjMaMGaPjx4/r0KFDiouLU2JiosLCwlSxYkW1aNHC8CY6AABAdpwOlGFhYYay2dvN7sj8UklISEiuz8GbSpYsqR49euTaeNWrV1f16tVzbTwAAJA3OX3LO2OFLOP5xUOHDnlnRtnIGDPjxfRixYrl+hwAAABg5HSgrFu3rqH8ww8/eHwyOdm8ebOh7OoLJgAAAPA8pwNlsWLFbLdHrVar1q9fbzuGMTecP39e69evt62QBgcHc7sWAADgLuDSUTC9e/e23W5OS0vL1b0JJ0+ebNts22KxqE2bNl45yQYAAACucSmR9e/fX9Ifgc5qter999/X4cOHvTKxOx08eFDTp0+3jStJffv29fq4AAAAyJlLgTIiIkJdunSxnZaTkpKiHj16ePXWd0JCgh599FHDMT9FixbVo48+6rUxAQAA4DyX7xlPnDjRdqvZYrEoOjpaLVu21K+//urxyZ04cUJt2rTRiRMnbKuTFotFL7/8skJDQz0+HgAAAFzncqBs2rSpRo4cabv1bLFYdPLkSTVs2FCTJ0/2yIbnN27c0OTJk1W/fn1bmMwYq169eho1apTpMQAAAOAZFmtGMnTBzZs31a5dO+3du9cW9jJWD4sUKaJBgwapZ8+eatWqlfz9/Z3qMzU1VTt27NDy5cv15Zdf6sqVK7Y+M/ovWrSo9u7dqypVqrg6ZfhIcHCwUlJS7OqDgoIMjzGYUWnsGo/0A9wNTk+O9PUUAMDl399uBUpJunDhglq2bGlYQbxz1VL647jGevXqqXbt2rr//vtVrFgxFSxYUKmpqbp586YuXLigM2fO6NixYzp06JBt4pn7sVqtKlGihNavX6/69eu7M134CIEScA2BEsDdwNXf304fvZhZ8eLFtXv3bj388MPasmWLLBaLXbBMSkrS7t27tXv37mz7ypxpM/rJ+KxRo0ZauHChqlWr5u50AQAA4CWmNnIsWrSovv/+e7311lsqUKCAYWUx48tqteb4lbmN9EeQLFy4sN544w3t2rWLMAkAAHCXMr0zuL+/vyZMmKCjR4/qmWeeUcGCBbMMitl9SbK1K126tCZMmKDTp0/r1VdfVUCA2wupAAAA8DK3n6HMypUrV/TVV19p3bp12rRpkxITE3OehMWi2rVrq127durevbs6dOjAKTh5BM9QAq7hGUoAd4NceynHWadPn9axY8f0+++/KzExUTdu3FBgYKDuu+8+FS9eXNWqVdMDDzygkJAQb04DPkKgBFxDoARwN8i1l3KcValSJVWqVMnbwwAAAMBHuK8MAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUAJAAAAUwJ8PQEAwP9UGrvG11Nwy+nJkb6eAgAfYoUSAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgSoCvJwAAuPdVGrvG11Nw2enJkb6eApBnsEIJAAAAUwiUAAAAMIVACQAAAFMIlAAAADCFQAkAAABTCJQAAAAwhUCZTx09elTjxo1T69atVbp0aQUHB6tQoUKqXLmyevTooRkzZujq1au+niYAALgHWKxWq9XXk0DuiY+P14gRI7R06dIcrw0JCdFrr72mMWPGyM/PvX97BAcHKyUlxa4+KChIycnJbvWZ2b24/x0A32MfSiBrrv7+ZoUyHzl06JDq1avnVJiUpMTERL300kvq3r27bt686eXZAQCAexWBMp84deqU2rdvr/j4eLvPIiIi1LVrV7Vs2VJFihSx+3zt2rV69NFHxWI2AABwhECZD6Slpalv3766dOmSob5Xr146ceKEfv75Z61Zs0Y7duxQbGysPvnkE4WFhRmu/eabbzRt2rTcnDYAALhHECjzgRkzZuinn34y1I0ePVorVqxQtWrVDPUFChTQ008/raioKJUpU8bw2VtvvcWLOgAAwA6BMo9LTk7WW2+9Zahr06aNpkyZkm27qlWr6ptvvlFgYKCt7tKlSzm2AwAA+Q+BMo9btmyZzp8/b6ibPHmyLBZLjm0bNmyo5557zlA3a9Yspaene3SOAADg3kagzOMWLVpkKEdERKh58+ZOtx8+fLihnJCQoG3btnlkbgAAIG8I8PUE4D2pqanavHmzoa579+4u9VGjRg1Vq1ZNJ0+etNUtW7ZM7dq188QUAQAuuBf33WW/z/yBFco87MCBA7p+/bqhrlWrVi7306JFC0N5y5YtZqYFAADyGAJlHnb48GG7unr16rncT506dQzlI0eOsNE5AACwIVDmYUePHjWUCxUqpHLlyrncT+athdLT0xUdHW1qbgAAIO/gGco8LCYmxlB2J0xKstuPUpLOnDmjWrVqudUfAAB3M55VdR2BMg+Li4szlEuVKuVWPyVKlLCru3DhglNtHR0sn1EfHBzs1nzs+rrNNkYAXGd5z9czyB+Cp957N0Pvxd8rnv45Z/f72xECZR6W+ajF0NBQt/oJCQmxq7t8+bJbfd0pq/8pAQB5R8ptX88gf/D1z5lAmYclJycbyoUKFXKrH0ftbt26lePYmccHAAB50723Dg2nZQ50AQHu/fvB39/fri41NTXbNpMmTVJYWJhb4wEAgHsLgTIPu33buP7tKBg6w1G7nI5fHDdunK5everWeAAA4N7CLe88LDAw0FBOS0tzqx9Hq5E5vVATHBzssZduAADA3Y1AmYdlDnTuvgTjTqB0RlBQkEvXp6SkuNwGALLC3ylA1lzNDATKPCzzM4yZj2F0VmJiol1d4cKFnWprtVrdGjOza9euKSwsTOfPn3f7bXUAyMDfKYBn8QxlHlasWDFD+cqVK27146idu3tauis4OFivv/46t9EBeAR/pwCexQplHla2bFlDOT4+3q1+HLXzRaCcOHFiro4JIO/i7xTAs1ihzMOqVq1qKMfExLj1Ys6ZM2fs6qpUqeL2vAAAQN5CoMzDateubSinpaXp1KlTLvdz/PhxQ7lkyZIqXry4qbkBAIC8g0CZhzVu3Niubt++fS73k7lNw4YN3Z4TAADIewiUeVjx4sUVERFhqNu4caNLfSQlJWnnzp2Guo4dO5qeGwDcDd555x1ZLBZZLBYNHjzY19MB7lkEyjwuMjLSUF65cmWO53DfacWKFXbXd+3a1SNzy87Ro0c1btw4tW7dWqVLl1ZwcLAKFSqkypUrq0ePHpoxYwYn8QAw5fjx43rnnXd8PQ0gTyBQ5nEDBw40lC9duqQZM2Y41TYtLU2TJk0y1LVs2VI1a9b02Pwyi4+P1yOPPKJatWpp8uTJ2rFjh+Lj45WSkqKbN2/q9OnTWr16tYYPH64KFSrovffey/EYSADILDExUY888ohu3Ljh66kAeQKBMo+rVauW3S3q8ePHa9euXTm2HTlypA4fPmyoGzNmjEfnd6dDhw6pXr16Wrp0qVPXJyYm6qWXXlL37t118+ZNr80LQN5y69Yt9e7dWz///LOvpwLkGQTKfGDSpEny8/vff+pbt26pW7du+vbbbx1en5KSopEjR2rmzJmG+hYtWqhPnz5emeOpU6fUvn17h3teRkREqGvXrmrZsqWKFCli9/natWv16KOPeuxUHgB51/Xr1xUZGeny8+QAskegzAcaN26sl19+2VB36dIlde3aVT169NDChQv1448/avPmzXrvvfdUu3ZtffTRR4brQ0NDNW/ePK/MLy0tTX379tWlS5cM9b169dKJEyf0888/a82aNdqxY4diY2P1ySef2B0r+c0332jatGlemR+AvOHw4cNq0qSJNm3a5OupAHmOxcqyTr6Qnp6up59+Wp999pnLbQsUKKCVK1fqL3/5i+cnJunDDz/U3/72N0Pd6NGj9f7772fZ5r///a9at26t2NhYW114eLhOnTplFzYBYP78+Ro2bJiSkpKyvGbQoEFu/R0JgBXKfMPPz0+ffvqpXnnlFQUEOH/iZvny5bV+/Xqvhcnk5GS99dZbhro2bdpoypQp2barWrWqvvnmGwUGBtrqLl26lGM7APnL8ePH1atXLw0aNCjbMAnAHAJlPuLn56fJkydr//796tu3rwoVKpTltaVKldKrr76qX375RW3atPHanJYtW6bz588b6iZPniyLxZJj24YNG+q5554z1M2aNYu3vgEoISFBzz//vCIiIrRq1Sq7z0eOHKlWrVr5YGZA3uT8UhXyjDp16mjJkiW6efOmduzYoXPnzik+Pl4BAQEqXry4GjRooDp16hhe5PGWRYsWGcoRERFq3ry50+2HDx+uDz/80FZOSEjQtm3b1K5dO09NEcA96J133tH06dPt6kNCQjRt2jQ99dRT/D0BeBCBMh8rWLCgOnXq5LPxU1NTtXnzZkNd9+7dXeqjRo0aqlatmk6ePGmrW7ZsGb8oANjp2rWrZs6cqQoVKvh6KkCewy1v+MyBAwd0/fp1Q507t6BatGhhKG/ZssXMtADkMREREVq9erXWrFlDmAS8hBVK+EzmTdMlqV69ei73U6dOHUP5yJEjunnzpgoWLOj23ADc+xo3bqxRo0bp8ccfz5VHeID8jEAJnzl69KihXKhQIZUrV87lfqpVq2Yop6enKzo6WrVq1TI1PwD3rtdee03h4eG+ngaQb/BPNvhMTEyMoexOmJSkMmXK2NWdOXPGrb4A5A2ESSB3ESjhM3FxcYZyqVKl3OqnRIkSdnUXLlxwqy8AAOA6AiV8JvNRi6GhoW71ExISYld3+fJlt/oCAACuI1DCZ5KTkw3l7DZaz46jdrdu3XKrLwAA4DoCJXwmc6B05UjIO/n7+9vVpaamutUXAABwHYESPnP79m1D2VEwdIajdhy/CABA7iFQwmcCAwMN5bS0NLf6cbQaGRwc7FZfAADAdQRK+Ezm0JeSkuJWPwRKAAB8i0AJnwkLCzOUMx/D6KzExES7usKFC7vVFwAAcB2BEj5TrFgxQ/nKlStu9eOonbt7WgIAANcRKOEzZcuWNZTj4+Pd6sdROwIlAAC5h0AJn6lataqhHBMT49aLOY6OWaxSpYrb8wIAAK4hUMJnateubSinpaXp1KlTLvdz/PhxQ7lkyZIqXry4qbkBAADnESjhM40bN7ar27dvn8v9ZG7TsGFDt+cEAABcR6CEzxQvXlwRERGGuo0bN7rUR1JSknbu3Gmo69ixo+m5AQAA5xEo4VORkZGG8sqVK106h3vFihV213ft2tUjcwMAAM4hUMKnBg4caChfunRJM2bMcKptWlqaJk2aZKhr2bKlatas6bH5AQCAnBEo4VO1atWyu0U9fvx47dq1K8e2I0eO1OHDhw11Y8aM8ej8AABAzgiU8LlJkybJz+9//yveunVL3bp107fffuvw+pSUFI0cOVIzZ8401Ldo0UJ9+vTx6lwBAIC9AF9PAGjcuLFefvllTZ482VZ36dIlde3aVd26ddPjjz+uqlWr6saNG4qKitKsWbN08uRJQx+hoaGaN29ebk8dAACIQIm7xD/+8Q/FxcXps88+s9VZrVatXr1aq1evzrZtgQIF9NVXX6latWpeniUAAHCEW964K/j5+enTTz/VK6+8ooAA5/+dU758ea1fv15/+ctfvDg7AACQHYvVarX6ehLAnX7++We9+eabWrt2rZKSkhxeU6pUKT377LN64YUXFBYWlsszBAAAdyJQ4q518+ZN7dixQ+fOnVN8fLwCAgJUvHhxNWjQQHXq1DG8yAMAAHyHQAkAAABTWOIBAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApBEoAAACYQqAEAACAKQRKAAAAmEKgBAAAgCkESgAAAJhCoAQAAIApAb6eAADcLc6ePavDhw/r9OnTunbtmlJTU1WoUCEVLVpUlStXVp06dVSsWDFfTxMA7joESgD52sGDBzV37lytWLFCZ8+ezfH6mjVrqk+fPho0aJAeeOCBXJgh3DFhwgS98847hrqwsDD9/vvvKly4sOn+Bw8erHnz5pnuJyebN29Wu3btvD4OYBa3vAHkS2fPnlWvXr1Uv359TZs2zakwKUlHjx7VP/7xD9WoUUOPP/64YmJivDxTuCo9PV3z58+3q7969aoWLlzogxkBeR+BEkC+s2HDBtWpU0erVq1yu4/09HQtWrRItWvX1oYNGzw4O5i1fv16nTt3zuFnM2fOzOXZAPkDt7wB5Cu7du1St27dlJycbKgPCQlRjx491LRpU1WvXl1hYWEqWLCgEhMTlZCQoAMHDujbb7/V3r17De2uXLmiyMhIrV27Vh06dMjNbwVZmDNnjqEcEBCgtLQ0SVJUVJT27dunxo0b+2JqQJ5lsVqtVl9PAgByQ1JSkmrUqKHffvvNVufn56eXX35Z//d//+fUs3U//vijnn32WR08eNBQX6xYMR05ckQlS5b0+LzhvEuXLqlMmTJKSUmR9Md/l/bt22vp0qW2a55++ml98sknpsZx9AxldHS0KlWqZKpf4F7FLW8A+ca0adMMYVKSPvnkE02aNMnpFzWaNm2qXbt2qU2bNob6ixcv6vXXX/fYXOGeBQsW2MKkJLVq1Uq9e/c2XLNw4UJdvXo1t6cG5GkESgD5xscff2wo9+7dW0899ZTL/RQsWFBfffWVwsLCDPXz58/XtWvXTM0R5sydO9dQbt26tbp3764CBQrY6pKSkvT555/n9tSAPI1ACSBf+PXXX3X69GlDnTthMkOpUqX0t7/9zVCXlJSkTZs2ud0nzNm/f78OHDhgqOvcubNCQkLUtWtXQ/2sWbNycWZA3kegBJAvHD161K6uatWqpvrs16+fXV3mQIPck/llnAceeEB16tSRJD3xxBOGz3755Rft2LEj1+YG5HW85Q0gX7h+/bpd3cWLF031WbNmTd133322vkNCQnT79m1Tfea2s2fPavfu3Tp79qySk5MVFham6tWrq2XLlipUqFC2bW/duqUffvhBR44c0bVr1xQSEqJy5cqpZcuWKl26dC59B39ITk6222Py4Ycftv05MjJS4eHhunTpkq1u5syZatWqVa7NEcjTrACQD6xevdoqyfA1atQo0/3++uuv1t9//92anJyc47Vz5861m4Or2rZta2g/aNCgLK99/fXXDdfOmDHD9tmGDRusLVq0sJtPxlehQoWsI0eOtF65csWu3/Pnz1tHjhxpLVy4cJbtO3XqZN27d6/L35+7Fi1aZDeHqKgowzXDhw83fB4cHGw9f/68W+MNGjTIbrzo6GgPfCfAvYlb3gDyhbp169rVTZ8+XZs3bzbV7wMPPKCyZcsqKCjIVD+5JSUlRWPGjFGnTp20c+fOLK9LSkrShx9+qIYNG+rMmTO2+k2bNqlmzZr68MMPdePGjSzbf//992rZsmWuvfyS+XZ3RESEGjZsaKjL/MxscnKy3Us8ANxDoASQL9x///2qX7++oS4lJUUPPfSQxo8fr/j4eN9MLBdZrVYNHDhQU6dOldXJLYhPnTqlnj17KjU1VevWrdNDDz2kCxcuONU2JSVFTz/9tN1m8J7222+/2Z1WNHjwYLvrGjdurIiICEPdxx9/7PTPAkDWCJQA8o2XX37Zri45OVmTJk1ShQoV1K1bN3366af6/ffffTA77/v3v/+txYsX28pVq1bVu+++q3Xr1ikqKkqrVq3SwIED5edn/NVw8OBBTZgwQY8++qhtj8dSpUpp/PjxWrdunfbt26e1a9dq9OjRuu+++wxtU1NTNX78eK9+X/PmzVN6erqtHBAQoAEDBji8NvMq5cmTJzk6E/AEH99yB4Bc1aNHjyyf+7vzq3r16tZnnnnGOn/+fI89G+frZyjv/Hr77bett2/fdnqed34NGDDAev36dYdtDx8+bC1TpkyuPV+Ynp5urVq1qmGs7t27Z3l9fHy8NSAgwHB9nz59XB6XZygBI97yBpCvfPnll+rWrZu2bNmS7XXHjx/X8ePHNXv2bElShQoV1KlTJ3Xu3FkPPfSQQkNDc2G23jFp0iSNHTs2y88HDx6suXPnatu2bXaf9erVK9vnImvVqqX33nvPbpuenTt3euVYwq1bt+q///2voc7R7e4MJUuWVNeuXfX111/b6r7++mvFxsaqTJkypuYyfPjwHN+Md1bhwoXtjnYE7mYESgD5SuHChfXdd99pwoQJmjp1qtLS0pxq99tvv2nOnDmaM2eOgoKC9Je//EV//etfFRkZ6eUZe9YDDzygF154IcfrHnvsMbtAGRgYqOnTp+fY9uGHH9ZTTz1lOALR0T6gnpD5ZZzixYurW7du2bZ56qmnDIEyLS1Nn3zyiV599VVTc1m3bp2p9nfKfAoTcLfjGUoA+U5gYKDeffddHTx4UAMGDFBwcLBL7VNSUrR69Wp169ZNzZo1U1RUlJdm6nnDhw9XYGBgjtfVq1fPru6hhx5yahUvODjYbjXy8uXLTs/RWdeuXdOyZcsMdf3798/xjfvIyEiVKFHCUDd79ux7bg9R4G5CoASQb9WqVUuff/654uLiNGfOHPXq1UuFCxd2qY89e/aoefPmmjZtmpdm6Vlt2rRx6rrixYvb1bVo0cLpccLDww3l7LYYctfixYuVlJRkqHPmOM3AwEC7l3Z+++03rV271qPzA/ITAiWAfK9IkSJ66qmntGLFCl2+fFnbtm3TG2+8ofbt26tgwYI5tk9NTdWoUaP07rvv5sJszalRo4ZT1zlatXXlqMrMq4RWL2zNk/l2d7169ey2hsqKo+A5Y8YMU/OJjo6W1Wr1yNeVK1dMzQXIbQRKALhDYGCgWrdurddee02bNm3SlStXtGXLFr366qtq3LixLBZLlm3HjRuX48s+vhQSEmLqpRFXnuvL7ufkCceOHdPu3bsNddm9jJNZnTp11KhRI0Pd+vXrdfr0aQ/MDsh/CJQAkI2goCC1bdtWb775pvbu3auzZ8/qrbfecnhLOD09XaNGjcr9STop8x6RrnLm2cvc8umnn9rVjR49WhaLxemvzM++pqen6+OPP86tbwHIUwiUAOCC8uXL6//+7/908uRJPfLII3afHzx4UD/88IMPZpaze+V4yJykpaVpwYIFXul7zpw5Sk1N9UrfQF5GoAQAN4SFhWnRokXq3Lmz3WffffedD2aUf6xdu1ZxcXFe6Ts+Pl4rVqzwSt9AXsY+lADyvNmzZ+u7775TfHy84uPjFRQUpJ9//tl0v35+fpoyZYrq1KljqD98+LDpvrPC6pn9yzihoaHq1KmTW31lbAF1p5kzZ+rRRx91e35AfkSgBJDn7dq1S0uXLjXUJSQkqGTJkqb7joiIUOnSpQ0rZlevXnW6fXp6ut3Z2dm5efOmS/PLaxISEuy29+nXr59mzZrldp+1a9fWkSNHbOXNmzfr+PHjql69utt9AvkNt7wB5Hn333+/Xd2OHTs81n+FChUM5ZCQEIfXOXrz+c7TZJyRkJDg0vV5zfz58+1WaR9//HFTfT755JN2dWYCKpAfESgB5HkPPvigXd0HH3zgsf7Pnj1rKGe1X6Ojt6SvX7/u9DiJiYmKiYlxbXJ5zNy5cw3lsmXLOr1Ze1YGDBhgt0o8b9483bp1y1S/QH5CoASQ57Vv315FihQx1G3dutUje0Zu27ZN8fHxhrq2bds6vNbRyqUrL5ds27bNKxuE3yv27NljuDUt/XHmuCuPDDhSvnx5/fnPfzbUXbp0SYsXLzbVL5CfECgB5HkFChTQkCFD7OqfeOIJnTx50u1+b926pdGjRxvqSpUqpb/85S8Ory9durRd3caNG50eb+bMma5NMI/J/DKOZP52d4aBAwfa1eX3nzfgCgIlgHxhwoQJKlq0qKEuJiZGzZs31/Lly13u78KFC+rRo4f2799vqB8/fnyWG4DXrl1bBQoUMNRNnz5dycnJOY43d+5cffPNNy7PM6+4efOm3Yph1apV1aRJE4/036dPH7uN33fv3q2DBw96pH8gryNQAsgXwsPDNXfuXLsXYy5cuKCHH35YrVu31pIlS3J8i/rkyZP6xz/+oRo1auj77783fPbggw9q2LBhWbYtVKiQOnToYKj79ddf9dhjj2UZKlNTU/XOO+9o6NCh2c4rr1u2bJnd2/OeWp2UpMKFC6tPnz529axSAs5h2yAA+UbPnj01ZcoUjRkzxu6zHTt2aMeOHQoODlajRo1UvXp1lShRQoGBgbp48aIuXLigqKgoRUdHO+y7UqVKWrJkSY7HE44ePVpr1qwx1K1atUpVqlTRyJEjVa9ePZUuXVrnz5/XDz/8oHnz5unMmTO2a1u3bq3t27e78d3f27x5uzvDoEGDNH/+fEPdF198oX/9619OHVtZuXJlj84nw+XLl+2eAQbuNgRKAPnK6NGjVbx4cQ0fPtzhG9bJycnauXOndu7c6XSfjRs31vLly+22D3KkQ4cO6tevnxYtWmSoj4mJ0bhx47JtO2DAAPXv3z/fBcro6Gi7F6jq1q2rWrVqeXSc9u3bq0KFCvrtt99sdYmJifriiy/017/+1aNjAXkNt7wB5DtPPvmkDhw4oEcffdTh3pDOCg0N1dtvv60ffvjBqTCZ4bPPPnO492FWLBaLXnrpJX322Wem5nuvmjt3rt3b7Z5enZT++DkPGDDArp7b3kDOCJQA8qWqVatq8eLFOn78uF577TU1aNBA/v7+Obbz9/dX06ZNNXXqVEVHR2vChAkKCgpyaezg4GDNnz9f33//vbp06ZLlbXI/Pz899NBD2rlzp959912n5pfXpKena968eXb1/fr188p4gwYNsqs7cOCA9uzZ45XxgLzCYs3Pm5oBwB1u3LihI0eO6PTp04qPj9eNGzeUkpKiAgUKKDw8XA888IDq1q3r8efZrl69qu3bt+v333/XhQsXVKhQIVWpUkUtW7ZU8eLFPToWAHgDgRIAAACmcMsbAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgCoESAAAAphAoAQAAYAqBEgAAAKYQKAEAAGAKgRIAAACmECgBAABgyv8DoCzCZBLBHcgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.hist(\n", " np.array(envelope_errors)[:, 0],\n", ")\n", "plt.xlabel(\"Sum AE\")\n", "plt.ylabel(\"Count\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.3646019382844139\n", "0.39348193324578395\n" ] } ], "source": [ "\n", "print(np.nanmedian(np.array(envelope_errors)[:, 0]))\n", "print(np.nanmean(np.array(envelope_errors)[:, 0]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### uptake check" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "from pigeon_feather.analysis import check_fitted_peptide_uptake\n", "\n", "\n", "all_idfs = list(set([pep.identifier for pep in all_peps]))\n", "\n", "\n", "def extract_numbers(s):\n", " numbers = re.findall(r\"(-?\\d+)-(-?\\d+)\", s)\n", " return tuple(map(int, numbers[0]))\n", "\n", "\n", "all_idfs.sort(key=extract_numbers)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "uptake_errors = []\n", "\n", "all_peps_grouped = tools.group_by_attributes(\n", " all_peps, [\"protein_state.state_name\", \"identifier\"]\n", ")\n", "\n", "for idf in all_idfs:\n", " try:\n", " idf_peps = all_peps_grouped[(check_state_name, idf)]\n", " avg_pep = tools.average_peptides(idf_peps)\n", "\n", " result = check_fitted_peptide_uptake(\n", " check_ana_obj, hdxms_data_list, avg_pep, state_name=check_state_name\n", " )\n", " uptake_errors.append((result, avg_pep))\n", " except Exception as e:\n", " print(idf, e)\n", "\n", "\n", "uptake_errors_array = np.array([i[0] for i in uptake_errors])" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABEYAAAInCAYAAACVwFzQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADS0ElEQVR4nOzdd5xU9b0//tfnnCk7s72wy1KWqlTpGLDnWr4mWKPm5iqWGGPEci2xRX5J1ORGk4iJJYoxVxM0Ua9iQ6PECmhEpSssCMKywPZeZnba+fz+AFZmd87Z2Sln2uv5eOwjzvmc+Zw3Bvecec/78/4IKaUEEREREREREVEGUhIdABERERERERFRojAxQkREREREREQZi4kRIiIiIiIiIspYTIwQERERERERUcZiYoSIiIiIiIiIMpYl0QFQehNC6I7ZbDYTIyEiIgK8Xq/uGDfqiwzv9URElGwGe78X3K6X4snoYYmIiCiZ8JEoMrzXExFRKgl1v+dSGiIiIiIiIiLKWEyMEBEREREREVHGYmKEiIiIiIiIiDIWEyNERERERERElLG4Kw0lDDvVExGR2Yy61FPs8V5PRESJMNj7PRMjFFc2my3kX0qbzQaPx5OAiIiIKJPZ7Xbd+xJFhvd6IiJKNoO933MpDRERERERERFlLCZGiIiIiIiIiChjMTFCRERERERERBmLiREiIiIiIiIiylhMjBARERERERFRxmJihIiIiIiIiIgyFhMjRERERERERJSxmBghIiIiIiIioozFxAgRERERERERZSwmRoiIiIiIiIgoYzExQkREREREREQZi4kRIiIiIiIiIspYTIwQERERERERUcZiYoSIiIiIiIiIMpYl0QEQpZPq6mo0NTXFZK6SkhJUVFTEZC4iIiKKjVje6wHe74mIkgETI0QxUl1djYmTJsHtcsVkPofTie2VlXxYIiIiShLV1dWYNGkiXC53zOZ0Oh2orNzO+z0RUQIxMUIUI01NTXC7XLj+d7/D8LFjo5rrwO7dePT229HU1MQHJSIioiTR1NQEl8uNvz50KSaNL4t6vspd9bjixmd4vyciSjAmRohibPjYsRgzZUqiwyAiIqI4mTS+DDOPGZnoMIiIKEbYfJWIiIiIiIiIMhYTI0RERERERESUsZgYISIiIiIiIqKMxcQIEREREREREWUsJkaIiIiIiIiIKGMxMUJEREREREREGYuJESIiIiIiIiLKWEyMEBEREREREVHGYmKEiIiIiIiIiDIWEyNERERERERElLEsiQ6AKJ15AwHUu1zwaxoK7HYU2O0QQiQ6LCIiIiIiIjqEiRGiOOjx+1HZ0oI97e0ISNl73GmxYHxBAY4qLITCBAkREREREVHCMTFCFGPdQuCdvXvREwj0G3P5/djS1IR9nZ04acQI2FQ1ARESERERERHRYewxQhRDWUVF2KmqIZMiR2r1eLBq/354BziPiIiIiIiI4ouJEaIY0aTE3FtugT/MJTJtHg/WHDgA7YilNkRERERERGQuJkaIYuTTzk6UHnPMoN7T0tOD7S0tcYqIiIiIiIiIBsLECFEMdHm9+KizM6L3bmtuRrvHE+OIiIiIiIiIKBxMjBDFwAf79sEX4ZIYCeDzujpILqkhIiIiIiIyHRMjRFEKSIm39+zRHXdaLPh/o0Yh22rVPafV48G+CCtOiIiIiIiIKHJMjBBFaWN9PepdLt3xOWVlyLPb8a2hQw3n+bK5mY1YiYiIiIiITMbECFGUjKpF8mw2lDqdAIBihwNHFxbqntvt86GqvT3m8REREREREZE+JkaIotDu8WBzY6Pu+PiCAogjtu+dWlwMh8Wie/7W5mYENC2mMRIREREREZE+JkaIorCxvh56i1+sioJReXlBx1RFweTiYt35egIBVLPXCBERERERkWmYGCGKwrr6et2xitxcWJT+/4mNzstDjkEj1h2trbrJFiIiIiIiIootJkaIIuTTNMNlNMNyckIeV4TAFIOqkU6vF+1HLL8hIiIiIiKi+GFihChClc3NcPv9IcdUITDE4dB974jcXMPte+tCVJoQERERERFR7PHTF1GE1hssoylzOqEaJDcUIXB0QYHueJeioHD8+GjCIyIiIiIiojDob49BRIbW19XpjuktoznS6Px8fNncDJ/OLjRHnXdepKERERGRSaSUgLcG0lMD6WsCpB+wlkDJmQahZic6PCIiCgMTI0QRaHa7Uedy6Y6XZw/8IGRRFIwvKEBlS0vI8RHHHYc2naU6RERElHgy4Eag+Z+AtyZ4oKcKga4tUApOhnBOgGDvMCKipMalNEQR2NHaqjvmlBJZlvByjuMLCqDoPCwJVcXnXV0RxUdERETxJTUPAk2v9U+K9J7ghdb6DrS2VQerSoiIKGkxMUIUgR06VR4AkKOzNCaULIsFo3Jzdcc3dXej0+sdVGxEREQUXwIBBJpWAD793ekOk91fQHZtin9QREQUMSZGiCJgmBgZ5LdCRxcW6o75pMS/qqoGNR8RERHFV5mjEvDWhn2+1rEW0t8ex4iIiCgaTIwQDZLH78eedv2Hm8EmRvLsdsOeJP/cvRveQGBQcxIREVF8jCizoNi+e3Bvkn5ore9zSQ0RUZJiYoRokHa1tSGg82DT3dAAWwRzTjCoGmn3erFq374IZiUiIqJY+9kPC6GI8JfNHiY9+yHdO+MQERERRYuJEaJBMmq82lxZGdGcJQ4HirKydMdf//pr3WQMERERmcOq1eLS7+ZF/H6NvUaIiJISEyNEg7TdoL9Iy/btEc0phDCsGqnt7sbnteGvZSYiIqLYKwm8CotFf+tdtfQ/IbKP0Z/AWw/prY9DZEREFA0mRogGQUqJnUYVIxEmRgBgeE4OcqxW3fHXvv6aa5OJiIgSRAa6kad9ojsuHOMhbKVQ8o8DFKfueVrXF/EIj4iIosDECNEgtPT06G6faxUC7VHsICOEMNyhZmdrKyoNqlWIiIgofgIt70KBR2dUQMn71sF/UmxQcvSrRqTrK8iAOw4REhFRpJgYIRoEo91oyqxWSG3wzdiONDovD3ZV1R1/dSebthERESVCoOl13THhGAthLfrmdfYU6D9mByBdkVeYEhFR7FkSHQBRKqnq6NAdKzVYBhMuVVEwvqAAW5ubQ45vaGjA9pYWTCwqCjlupLq6Gk1NTdGGCAAoKSlBRUVFTOYiIiJKdtLbBK3tI91x4ZwY/FrNhnCM092FRnN/DSV3ZkxjJCKiyDExQjQIVQNUjMTCuIICVDY1QROhm7v9o7IS9xx3HITOeCjV1dWYOGkS3C5XTGJ0OJ3YXlnJ5AgREWWEQPMbAHSqQpUsiKxR/Q/nTENAb3teby1kIDb3ZCIiih4TI5TxBlNJsaOxUXfMfeBATOKxqypKNA0NOktqtjU3Y3NjI2aUloY9Z1NTE9wuF67/3e8wfOzYqOI7sHs3Hr39djQ1NTExQkREGSHQ/LbumHAcBSFC3LNt5YCaDQS6Q75P9uwBEPnWv0REFDtMjFBGG0wlhcXhwLnPPx9yTAYCuPGKKwAAXV1dUcdVrmmo8flgycoKOb5s61ZMLSmBRRlcm6DhY8dizJQpUcdHRESUKaS/A1rnJt1xxTkh5HEhBETWWMju0LvQSPduADOiD5CIiKLGxAhltMFUUnQKgR06Yw5FwYXXXIP/e/hhuHt6oo7LCmDXihWYeNFFIcerOzvx5u7dOHf8+KivRURERPq09n8DCIQeVHMA21Dd9wqHQWKkZx8UTI1BhEREFC0mRogQXiXFrrY2oKEh5NiQvDz4R4yIaUxfvfIKZnz/++iRMuT4izt24LhhwzDE6YzpdYmIiOgbAaOmq/YKw55fwj4cEDZAekPNjBxrfQwiJCKiaHG7XqIwtXk8umMFdnvMr+fr7sb8PP21xz2BAB7ZuBGBKLcIJiIiotCklNDaVuuOiyzjXltCqBCOMbrjOVb93mVERGQeJkaIwtRmsEQmHokRADg2JwcjcnJ0x7c1N+P5HXoLfIiIiCga0v01pLdWZ1RAZI0ccA6RZZAYsYTX/J2IiOKLiRGiMEgp0eENVQZ7ULwSI6oQ+PG0aYbnvLJzJ96vro7L9YmIiDKZ1r5Gf9BWBqGEbpJ+JKPkiV3tQnlJ6F3oiIjIPEyMEIXB7fcjoNPrw6aqyLLEr13PlJISnDLS+Bupxzdtwtt79kDqxEhERESDF2j7t+6YMsAymsOEkgVYS3THT5zpGHRcREQUW0yMEIXBqFokz2aL+/V/OHUqygyarEoAf/niC/z+88+xr6Mj7vEQERGlOyk1aJ0bdceFfVTYcwm7foP2k2YxMUJElGjclYYoDJ0GiZFcExIj2VYrfjpnDhZ/9BF8Bs1WP6urw2d1dRiRm4uK3Fw4DlWy1DU3Y96dd+IrVUXVvn0IaBosioIsiwU5ViuGOBwocTigKsyVEhERAQf7iyDQHnIsIFWottKw5xL24ZBdm0KOnTjTAX8kARIRUcwwMUIUhkRXjADA2IIC/OiYY7B08+YBz93f2Yn9nZ1Bx4bPn48OAHC7+51fiYP9TEbk5mJCYSHy49QzhYiIKFUYVYu4/UWwi/C/TBD2YbpjR1XYsFO2DCo2IiKKLX49TBSGZEiMAMBpo0bh0smT4zJ3QErs7ejAv/buxSc1NXD7+f0VERFlLq1zve5Yt79oUHMd7DMyRHfcqW0d1HxERBRbTIwQhSHRS2mOdO748bh8ypS4XmN/VxdWVlWhmv1KiIgoQ2mdG3THXINMjAAHl9PocWg7Bz0fERHFDhMjRAPwBgLwBAIhx1Qh4IzjjjR6zh43DrfPnRvXahWfpuHTujp80dTE3W6IiCijSF8zZE9VyDFNkxEmRvSX0zjk14Oej4iIYoeJEaIBGC2jybXZIIQwMZpvHFtejj98+9s4YfhwxDOC7S0tWFdfD43JESIiyhBG/UW27vZCg3XQcwpbme6YXVZBap5Bz0lERLHBxAjRAIyW0ZjZXySUfLsdN82ejT+ddhrOP+oolGdnx+U6VR0d2NDQwMoRIiLKCEbLaNZu6YloTqHmAGro+7QCP6RrR0TzEhFR9LgrDdEABqoYSQalTicumTQJl0yahG6fD/s6OtDh9cKraYCU2L93L268/npc9fOfY+TYsVCEgE/T0OHxoM7lQk1XFwZKeexpb4fTYoHDlD8RERFR4mhdW3THPvnCjXnfjmxeYS2DDOzWvaaSMy2yiYmIKCpMjBANIFl2pAlXttWKicXFQcc2NDSgYdMm5EqJwqys3uMlDgfGFhTA5fNhS1MT9vXZ4revrc3NGJugpUNERERmkFKD1q2/S8xnX0a+5EXYyiB7dBIjnZuBoQsjnpuIiCLHpTREA+hKgYqRaDmtVswrL8exQ4dCGSDxsVdV4SwtNSkyIiIic0nPPiDQFXIsACd2H/BFPrltqO6QUZUKERHFFytGiAxoUqLbp/8AlGMdfPO1ZDYqLw8OiwUfHzgAv04/kYAQOPbWWxFgvxEiIkoR1dXVaGpqCuvc3MAnGKEz1uyO7osBYdN/v+zZDenvgLDkRXUNIiIaPCZGiAy4fD7d3htOiwWqkn5FV6VOJ44bNgxrDhzQ/bMXT5iATzo7MdfUyIiIiAavuroakyZNhMvlDuv8excV49ZLC0OO/eOVg7vVdHaFrigZiFBsgKUI8LeEHNe6tkAtOCGiuYmIKHJMjBAZ6DKqFkmTZTShlGVnY05ZGT6vr9c95+OODlzU1YXynBwTIyMiIhqcpqYmuFxu/PWhSzFpvP6WuYeNzvkYQGPIsXHjJwH4CD09ke1MAxzqM6KXGOnexsQIEVECMDFCZMAwMZJmy2j6Gp2fj0a3G1UdHSHHAwD+8sUX+P/mzYNgQ1YiIkpyk8aXYeYxIw3PkVIiUNsJaKHHLQ79HiHhErZSSFdl6Ot3hz5ORETxxcQIkQGjxqvpnhgBgJmlpWh2u9GpkyDa3NiIf3z8MSY5nRFfo6SkBBUVFRG/n4iIKGYCnYCmUw0irOjqyQo9NgjCWqI7prm2Rz0/ERENHhMjRAYydSnNYRZFwdyhQ/H+vn265zyzdSv+dd11kIFARNdwOJ3YXlnJ5AgRESWc9IVeQgMAsJYAiEGFpEFiRLr3QGoeCMUe/XWIiChsTIwQGcjkpTSHFTscGJufj93t7SHHc8rLcdOLL6JU06k7NnBg9248evvtaGpqYmKEiIgSTnr1EyNGO8oMhlBsgJoHBEItVQ1AunZC5EyNybWIiCg8TIwQ6ZADbNWbnSGJEQA4pqQEB7q64NGpCqm32TB7zBhY0nCXHiIiyiA+/S19hXUIgO6YXEZYSyBDJkYArbsSChMjRESm4qcYHR6PBy+88AKuvfZazJ49G8OHD4fD4UB2djYqKiowf/583HbbbVi5ciWk1NvUNHzvvfceFi1ahBkzZqCkpARWqxW5ubmYPHkyLr30Uixfvhx+vz8Gf7KDf7ZnnnkGl1xyCY4++mjk5+fDarWiqKgIc+fOxY033oh///vfMblWKnP5/dB0/r91WCwZlQSwqSqmFhfrjnsCAexsazMvICKiNPTwww9DCNH7c/fdd0c1n5nPFulC+pp1x4x6gwyWsA3RHdN0GrMSEVH8sGKkD7/fjyVLluDBBx9EQ0NDyHNcLhf27duHtWvX4oEHHsDkyZNx77334oILLhj09davX4+rrroKmzZt6jfW1dWFyspKVFZW4tlnn8WYMWPw6KOP4rvf/e6gr3PYc889h5tuuinkn621tRXr1q3DunXr8PDDD+Pkk0/G0qVLMXHixIivl8q4jCbY6Px87Ght1f33srO1FUcXFEDNoIQREVGsVFZW4s4774zJXGY/W6QLqXl1lrcAgACsRQD2xuZiRn1GutmAlYjIbPwEc4QDBw7gxBNPxJ133qmbFAll27ZtuPDCC7Fo0SJ4DXYx6evvf/875s2bF/LBJZQ9e/ZgwYIFuOeee8K+xmFSSlx33XW4+OKLw/6zrVq1CnPnzsU///nPQV8vHWT6jjR9KULgmBL9BzlPIIA9Olv7EhGRPp/Ph4ULF8Ltdkc9l5nPFmnH16I/ZimEEGrMLjXQzjSxqEYmIqLwsWLkkJaWFpx++umorOxfvmi1WjF9+nQMHToUXq8XVVVV+Oqrr/qdt3TpUnR2duLZZ58d8Hovv/wyLrvsMmh9GlbabDbMmDEDpaWlqKurw5YtW/olW+6++25kZ2fj1ltvDfvPd/PNN+Oxxx7rd7ywsBBTp05Fbm4u9uzZ0+/P39XVhe9973t49913ccIJJ4R9vXSQ6TvShDI8JwdWtxs+hyPk+I6WFozNz4ciYtC1n4goQ/zyl7/Ehg0bop7H7GeLdCP9RstoimJ7MTUXEDZAhvgSJtAJ6TkAkTUittckIiJdrBg55LLLLuuXFCgrK8Pjjz+O1tZWfP7551ixYgVWrlyJHTt2oKqqCtdeey1Enw+Af//73/HAAw8YXmvPnj344Q9/GPTgoqoqFi9ejNraWnz66adYsWIFPv/8c+zfvx933HEHlD7LE372s59h3bp1Yf3Zli9fjoceeijoWGFhIf7617+irq4Oq1evxptvvolt27Zh27ZtOPvss4PO9Xg8+MEPfoCurq6wrpcuWDHSnxAC2S3636i5/H7s6+w0MSIiotT20Ucf4be//W3U85j9bJGOzOovAhy8nxoup3FxOQ0RkZmYGAHw9ttv48033ww6NnXqVKxfvx7XXHMNsrOz+71n1KhR+NOf/oRXX30V1j4fku+9917D5Sq33norOo5YcqAoCl588UX8+te/RlFR8DcSQ4YMwf33349XXnkFFss3BT5+vx933HHHgH82t9uNm266qd+cn332GS6//HLY+lQ+TJo0Ca+//jpuv/32oOMHDhzAH/7whwGvl064I01oWV1d6Ni3T3d8F5uwEhGFpbOzM2SFRyTMfLZIWwaJEcS6YgSAsBksp3Hvivn1iIhIHxMjAJYsWRL0Ojc3F6+//jqGDx8+4HvPOeecfu/v7OzEE088EfL8jRs34uWXXw46tnjxYpx//vkDXufBBx8MOvb+++/j/fffN3zf0qVLsX///qBjzz33HMaPH2/4vvvvvx8XXnhh0LElS5agxaBaIJ0MtFVvplaMAIAAsGP5ct3xlp4etMRgnTwRUbr77//+b+zZsyfqecx+tkhXZlaMAICw6O/2Jl1MjBARmSnjEyONjY344IMPgo5de+21GDNmTNhzXHvttRg7dmzQsRUrVoQ89/HHHw96XVhYGHYX+uuvvx7Tp08POhaqb8iRli5dGvT6jDPOwKmnnjrgtYQQePjhh2G323uPtbe34x//+EdYsaY6r6bBr9P4zKoosKqxa8BmpLKyEhs2bIj6J1TvnGjsW70aaiCgO86te4mIjL3yyiv461//2vt62rRpGDZsWERzmf1skY5kwAVoOkl9YQHUvJhf06hviebeGfPrERGRvoxvvrp69WoE+nzA+8///M9BzaGqKs455xz88Y9/7D22adMmSCmDepAEAgG8+OKLQe+95JJL4HQ6w7qOEALXXHMNFi1a1HvsrbfegsvlCjnHhg0b+jWJvfrqq8O6FgCUl5fjvPPOwwsvvNB77KWXXsL1118f9hypKtHLaNoaGwEACxcujOm8seoTIwMB5LhcaM/NDTm+r7MT04cMQZYl43/FEBH1U1dXF3Q/ttlseOaZZ3DOOecMei6zny3SlVG1CCxF/XrKxYSlUD8e19eQMhDTnXCIiEhfxn9q2bZtW9Brm83W75uTcPStGPH5fGhpaUFx8Tdlkp999hna+nyT3rfR6UDOPvvsoIcXl8uFt956CxdccEG/c1euXBn02mq14swzzxz09Y5MjKxZswYNDQ0oLS0d1DypJtGJke5DDUwX3nUXpsyaFfV8G1evxv89/DDcPT1Rz3VYrsuFzrw8aCEqaySAPR0dmFQU+zXZRESp7sorr0RTU1Pv63vvvRfTpk2LaC6zny3SluEyGv0lL9EQqgM+zQ6r4uk/KD2HdqapiMu1iYgoWMYnRmbNmoUbbrgBtbW1qKmpQSAQ6NelPRw9YXzg/Oijj4JeK4qC+fPnD+o6w4cPR0VFBaqrq3uPffjhhyEfXvpeb8aMGSEbyRo57rjjgl5rmoY1a9ak/cNSohMjh5VWVGDMlClRz3Ng9+4YRBNM1TSMyMlBtc4uNFXt7ZhYWBifb9mIiFLUY489hrfeeqv39fHHH4/bbrst4vnMfrZIV9Kv30MtXokRAPAEckMnRgBI106AiREiIlNkfGJkwYIFWLBgQdTzbN26Nei13W4PqhYJdc7YsWORq7MUwcgxxxwT9PCyfv36sGKKpBJmzJgxyMnJCVqCsX79+rR/WEqWxEiyO6qgQDcx0uXzocntxpAMKsUmIjKyY8eOoCRITk4Oli1bFtEXMoeZ/WyRrqTPoLl8HHakOawnkIsca1PIMc29CyoG7gtHRETRy/jmq7Hg8Xj6bfc7JcS3/H0bYB599NERXa/vjjK7dvXvXO5yuYIecKK53rhx4wa8XrphYiQ8hVlZyO+z5fOR9hyxdSQRUSbz+/1YuHAhXC5X77ElS5b0W4o7WGY+W6Q1f6vukLDELzHiCeg3dZXur+N2XSIiCsbESAw8/fTTQWuFAYRsoFZTUxP0OpztgEMpLy8Pet3Y2Bj0oAUAtbW1kH16P8Tqenv37o1onlRimBhhQ9FeQgiMyc/XHd/f2Qmfwe41RESZ4t5778W6det6X3/3u98dVEN0PWY+W6QrGXADms6SaGEF1Jy4XbtH06/u0VzcmYaIyCxMjESpsbERP//5z4OOKYqC//qv/+p3bkNDQ9DrsrKyiK45ZMiQfseam4ObhtXV1fU7J1bX65sESjdSSrj8ft1xVowEq8jLg6LTRyQgJfbFaCccIqJUtXbtWvzmN7/pfV1cXIz//d//jcncZj5bpC2DahFYCuLaK8sT0E+MSPfXkFKL27WJiOgbTIxEQdO0fp3lAeDiiy/uV8ra2dkJr9cbdCwvT7980kiotcOtrcE39ZaW/mtlY3W9vtcKxePxoCNFl1H0BAIhd1oBgCxVhRrFWvB0ZFdVDDNo6ludon8PiIhiobu7GwsXLkTgiOq5xx9/HEOHDo16brOfLfpK5Xv9kYz6i4g49hcBgIC0o6FV58sYzQ3pORDX6xMR0UH8hBeFO+64A2+88UbQsaKiIvzud7/rd67H07/juDPCppSh3td3V5x4Xi+cHXjuu+8+5Ofn93tgSwXsLzJ4RstpGt1uuAz+nRIRpbObbroJX3/9Ta+ISy65BBdddFFM5jb72aKvVL7XH0ka9hcpjPv1K3fr//tjnxEiInMwMRKhX//613jggQeCjgkh8NRTT/VbpwuEfnixRNirQlXVfsd8fT54xvN6fa8Vys9+9jO0t7fDZtCYM1kxMTJ4ZU4nskL8vTxsn87ONURE6ez111/HX/7yl97XI0aMwKOPPhqz+c1+tugrle/1QQyX0sQ/MbJjr/6/Z+neE/frExEREyMRue+++/r1FQGAe+65B+eee27I9wRCNKAM9RASjlDv07TgNajxvF7fa4Vit9sjLudNNCZGBk8IgZEG20PuZWKEiDJMQ0MDrrrqqt7XQgg8/fTTKCgoiNk1zH626CuV7/VHkj6DihFr/BMjX1XrV4xoPUyMEBGZgYmRQZBS4tZbb8Vdd93Vb+y6664LmSw5zBriA7XfoMGnkVDf4NjtdtOu1/da6YaJkchUGDwct3s8aA/xzSYRUbq66qqr0NjY2Pv6uuuuw2mnnRbTa5j9bJGOpPQDAb0+KQKwFMQ9hl3VrBghIko0JkbC5PP5cMUVV2DJkiX9xhYtWoRHHnnE8P2hHi4iXZMbzsNLPK+X7g9KRv0wnEyM6Cq025Fj8O9nP6tGiChD/PnPf8aKFSt6X0+YMCFk/7Fomf1skZYMqkVgyYcQkVXgDIZhxQgTI0REpmBiJAwtLS04/fTTsWzZsn5jP/3pT/HYY48NuJVbXl5ev3O6ItzGtDPEB8zsPruC5Idohhmr6/W9VrrpNtqqN8K125lACGFYNbKf2/YSUQbYtWsXbrnllt7XFosFy5Ytg8PhiPm1zH62SEeJbrwKANV1fmjQeb7w1UMGeP8kIoo3JkYGsHPnTsybNw+rVq3qN3b//ff3a8Cqx2Kx9FuH29bWFlFMod5XVlYW9Lq4uDis90Vyvb7XSidSSrgNEiMOJkYMVRj0GenwetHB5TRElMYCgQAWLlyI7u7u3mN33XUXjj322Lhcz+xni7SU4MarAKBpgE/ob98s3XtNiYOIKJPxU56BDz/8EBdccAFaWoL3t7darfjLX/6Cyy67bFDzDRs2DO3t7b2v6+vrI4qr7/uysrKQ2+cD6bBhwwZ8X6TXS+cHpZ5AAJqUIceyVBWqwlyikVybDXk2Gzp0Srn3d3VhciaUZhNRRlq+fDk+/fTToGObN2/GhRdeGNb7j+xJAgD/93//hy+//DLo2PXXX49TTjml97WZzxbpSPrbdcfMaLx6WFNXDobrFOjsrnwfHWp4XyyUlJSgoqIihpEREWUGJkZ0LFu2DFdddVW/NbcFBQV4+eWX8e1vf3vQc44bNw6VlZW9r6urqyOKbe/e4G8Oxo0b1++c0tJS5ObmBpXGxup6Y8eOjWieVMD+ItEbmZuLrc3NIcf2d3ZicohqJiKidOByufode+211yKer7KyMui5AQDOOuusoNdmPlukI+lv0x0Tlv7LkmOtrqEDQgD/WP4JbrssdCLmr0/cjf/535aQY305nQ5UVm5ncoSIaJCYGAlhyZIluO222yD7VA6MGTMGb775JiZNmhTRvFOmTMEbb7zR+3rHjh0RzdP3fVOmTAl53uTJk4O+uYrket3d3di/f39Y10sHLoNlNE4uownLiJwc3cRIu9eLTq8XuTabyVEREaUns58t0o5BxYgZO9K0dbghJTB31mQAtSHPue7SY3DO9+YOOFflrnpcceMzaGpqYmKEiGiQ+Emvj/vuuy/kdrzz5s3D66+/jiFDhkQ899y5wTe12tpa1NTUhFz2osfn82Hz5s1Bx2bNmqV7vSMTI+vWrRtEtAdt2LChX4JI73rpwKhihFv1hifPbjdcTlPT1YUJRUUmR0VElJ7MfrZIJ1LrAbSe0IPCCihO02LJyR8CvcRIQbYXJWNHmhYLEVEmYsOEIzzyyCMhkyLnnXce3n///aiSIgBw0kknQenTo+K9994b1Bxr1qyBp08Dy9NOOy3kuUeuQQYONpLdt2/foK73zjvvBL3Oz8/HnDlzBjVHKjGsGGFiJGwjcnJ0x2qOaEpIRJROrrjiCkgpI/4ZNWpU0Hy//OUv+51zxRVXBJ1j9rNFWjFYRnNwq17jHQdjyeU12LXI39bvSyoiIootJkYOeeONN3DTTTf1O/7jH/8Yy5cvj8k2e0OGDOn3zc7zzz8/qDmee+65oNfl5eWYOXNmyHNPP/102PosWRjM9aSU/c4/88wzoapq2HOkmm6jHiNcShO2YQaJkSa3Gx6DBBQREYXP7GeLdGLYeNWEZTRH8mtWQMkKPSh9gMYvFYiI4omJERxsVLZw4UJomhZ0fNGiRfjzn//c75uYaPTdyeatt97C+vXrw3rvnj178OyzzwYdu/LKK3Xjy8vLw7nnnht07I9//CO6urrCut4LL7yAnTt3Bh276qqrwnpvqmLz1dgosNsNtzauZdUIEVHMmPlskVYGqBgxnUEyRvraTAuDiCgTZcBdb2A/+clPgra6A4AFCxbg0Ucfjfm1Lr30UhQd0V9BSokf/OAHaGpqMnyfy+XCRRddhJ6eb9bCOhwOXHPNNYbvu/HGG4Ne19TU4PLLL++XBOpr+/btuPbaa4OOTZs2Daeeeqrh+1Kd0VKabFaMhE0IgWHZOvsOgstpiIhiyexni3SRTBUjA14zYNAkloiIopbxiZG3334bb7/9dtCx8vJyLFu2LC7fluTm5mLx4sVBx3bt2oXTTjsNu3btCvme2tpafOc73+n37c/NN9+MESNGGF7v+OOPx9lnnx107OWXX8bFF18ctJXvkT799FOcccYZaG1tDTr++9//3tT1tmbzBQLw6SSMLIoCaxovIYoHo+U0dd3dCAyQnCMiovCY/WyRLhK9Ve9grmmUxCEiouhl/Ffgv/3tb/sdq62tRXFxcdRz79mzB6NHj+53/MYbb8Qrr7yCjz76qPfY5s2bMX36dFx66aVYsGABhg0bhoaGBrz33nt46qmn+iUpZs6ciV/84hdhxbF06VL8+9//RvMRW6i+8MILWLNmDa6++mocd9xxKCwsxN69e7F8+XK8+OKL8PepnFi0aBHOOOOMQfzpUw+rRWJriMMBixDwh2gYF5ASDW53AqIiIkpPZj9bpIUEb9Xb/5oGyRgmRoiI4iqjP+3V1tbiww8/NP26qqritddew2mnnYaNGzf2Hne5XHjiiSfwxBNPGL5/9OjReOWVV2C328O63rBhw/Cvf/0Lp512WtBDUE1NDe6+++4B33/mmWfiD3/4Q1jXSmXsLxJbqqJgaHY29uv0tKnp6gI37SUiig2zny1SXTJt1dt7WZUVI0REiZLRS2lWrVqVsGsXFRXh3XffxVlnnTWo9x133HFYs2ZNvy39BjJr1iy89957mDx58qDed9VVV+G1117LiAelbqOtelkxEhGj5TQ1XV3g5oNERLFj9rNFSjOsFjF3q94jr6vL384te4mI4iijEyP79+9P6PWLioqwYsUKvPrqqzjxxBMNe5pMnToVTz75JNasWRPx2t+ZM2di06ZNWLJkCSZNmqR7nhACZ5xxBt599108+eST/bb8TVesGIm9oQYNWHsCAbhMjIWIKBOY/WyRqpKt8SqAg9v1Cp1nLunVr3AhIqKoZfTX4LfeeituvfXWRIeBc889F+eeey4aGhqwdu1a1NbWorm5GU6nE+Xl5Tj22GMxZsyYmFzLarXilltuwS233IIdO3Zgy5YtqKurQ2dnJ/Lz8zFq1Cgcd9xxQd3tM4VRjxFWjETGrqoocTjQpNNPpC0TtoMkIgpTVVVVzOYy89kiJSXbVr04+MUULPmArzH0CYF2QHWYGxQRUYbgp70kUlpainPOOce0602YMAETJkww7XrJzm2UGGHFSMSGZWczMUJElCBmP1ukCuMdaQpMi6P/tfMhdRIj0t8BYRtqckRERJmBn0qIDjFKjDhYMRIxoz4jbiHgKCkxMRoiIqKBltIkpmIEAHemISJKECZGiABIMDESL7k2G3INKm6Gzp5tYjREREQYYClNgVlR9GOUlDGqciEiougwMUIEwA9A0+n2nqWqUBLRnT6NlBtUjTAxQkREZpKaJ+m26u3FLXuJiBKCiREiAPr70bBaJBbKDXanKZ0+HX5uQUhERGYZoPFqQrbqPcRwGY+/w7xAiIgyDBMjRAC8Bg9BTIxEr8ThgEWn0aolKwvVHo/JERERUaZK2v4iAKDmAFBDj2ndkJrRVzlERBQpJkaIYJwY4Y400VOEwFCnfmny1z06Jc1ERESxlqT9RYDDW/bm6Z8QYNUIEVE8MDFCBMBrMMaKkdgYarCchokRIiIyi/FWvQmuGBkgBjZgJSKKDyZGiAD4uJQm7oz6jLT4/ajt6jIxGiIiylTGS2kKzAtED7fsJSIyHRMjRDCuGHEyMRITWRYLCu123fENDQ0mRkNERBnLKLmQ9BUjXEpDRBQPTIwQgc1XzWK0nGZDfb2JkRARUSY6uFWvO/SgsACK/n3KNAZb9rJihIgoPpgYIQK36zWL0XKarc3N6PH7TYyGiIgyzgDVIoncqvcw44oRJkaIiOKBiRHKeNbsbGg6D0I2RYGqs80sDV5RVhZsauhtCP2ahi+amkyOiIiIMolx49UC0+IwNMCuNFIGzIuFiChD8BMfZTxHcbH+GLfqjSkxwLa9XE5DRERxZdSjw2gJi4mEUAE1V2dUAgE2KyciijUmRijjGSVG2Hg19oyW02xsaICU0sRoiIgok8hAp+6YMKrUMBmX0xARmYuJEcp4jpIS/TEmRmKuzCAx0uR2o7pT/6GViIgoKkYVI0mUGOGWvURE5mJihDKe4VIaJkZizq6qKM7K0h3nchoiIooXGdBPjAjd5SvmEwbLelgxQkQUe0yMUMYzqhjhUpr4GGg5DRERUexJwG9QlZgyFSNtpoVBRJQpmBihjMeKEfMZJUa2t7Sg22e0gTIREdHgWUQPAJ0dXRQnhEiee75xjxGD5UBERBQRJkYo43FXGvPl2+3I0tm2V5MSm1k1QkREMWZTXPqDyVQtAhhXjATa2aiciCjGmBihjMeKEfMJIQyrRjYwMUJERDFmNUiMCDW5EiNCsQGKI/Sg9AOaQZKHiIgGjYkRymgeTYMtJyfkmFVRYFX4n0i8GPYZqa+Hxm/DiIgohmyqUcVI8jRe7WVUxcLlNEREMRWXr8OXLVvW+8+jR4/GSSedFJN5q6qq8OSTT2LLli3YvHkzXnjhBcyfPz8mc1Nm6gzorDUGq0XirdTphJASUoh+Y+1eL3a3tWF8YWECIiMionRktJQm2SpGgIMxSYTeqU0GOiFQbnJERETpKy6f/K644gqIQx92LrjggpglRvbv34/77ruvd+6dO3cyMUJRYWIkcayqihwp0RkiMQIcXE7DxAgREcVKSvUYAQaoGOGWvUREsRS3dQJSypg3hsrLy+udGwAaGxtjOj9lHiZGEivf4HfEhvrQ35IRERFFwrDHSBImRoyqWGTAYNthIiIatLglRoQQvZUdsVJVVdU7NwB4PJ6Yzk+Zp8MgMeJkYiTu8jVNd+zrtja0879xIiKKAUUxToxAZY8RIqJMlhKdJXt6erB+/XrcddddAL6pGDlcQUIUKVaMJFYWgO66upBjEsBG7k5DREQxUF5igSJ0qhTVbAgRegv5RDKuGGFihIgolgb1ya+npweTJ0/G3r17Bzz3cPJi+fLlUNXY3WyEEL1zT5w4MWbzUmYyTIxYrSZGkpkEgNp16zD+rLNCjm+or8cpI0eaGxQREaWdUeUGj7xJ2HgVgPFOOf5OSKlBiJT4jpOIKOkN6rdpVlYWHnnkkd7+IXo/Rxro3MH+HFZUVIQTTzwxNv8WKGMZJUa4lMYcdevX645tbmxEwGC5DRERUThGl+t/2ZGM/UUAHKxiUfW2tteAgMHSICIiGpRBp5kXLFiA8847D8A3fUT6/hxJ75xIf6SUEELgkUcegd1uj8m/BMpcRj1GuJTGHI1ffqlbutbt82FHa6up8RARUfpJyYoRwDi2AHemISKKlYjq7x5++GFkZ2cnpGJk6NChePbZZ/GDH/wgJv8CKHN5AwG4daoRVCFgVVieagbN68WorCzd8Y3cnYaIiKI0KgUrRgDj2KSfO9MQEcVKRF+JjxgxAm+99Ra+/vrrfmNSSlx55ZW9lSNz5szBtddeG1FwQgioqgq73Y7CwkJUVFRg/PjxMd/thjJTS0+P7pjDYuHfMxONz8rC1zr/f2xoaMAlkyebHBEREaWT9KwYYQNWIqJYiXitwAknnIATTjgh5NiVV17Z+8+jRo3C5ZdfHulliOKm2e3WHWN/EXONM6gY2dvRgWa3G8UOh4kRERFROjGuGEnCrXoPEZY86OylA8kte4mIYiZuawVCLashSibNRhUj3JHGVAUWC0bk5OiOb+ByGiIiipQMYESp3hceAlD17z8Jx4oRIiJTxOVr8SMrRObOnRuPSxBFzahihI1XzTerrAz7u7pCjm1oaMDpo0ebGxAREaUFK5phsegsj1VzDu7+kqSMqllYMUJEFDtx+fT39NNPx2Naopgy6jHCpTTmm1VWhtdD9C0CgC8aG+ELBGBVk/fhlYiIkpNVNuoPJnN/EQBQcwEIINSCmkAXpNQgBJvFExFFi79JKWOxYiS5TCgq0v333hMIYFtzs8kRERFROrDKBt2xZN6RBsDBpIfuUh8JBLgzDRFRLDAxQhnLsMcIEyOmsyoKpg0Zoju+oUH/wZaIiEiPUcVIMjdePYxb9hIRxR8TI5SxWlgxknRmlZXpjm1kA1YiIoqAUcVI0i+lAdiAlYjIBHH/9Of1erF8+XKsWLECmzZtQkNDA7q7u+H3+6FpWsTzCiHg9/tjGCllEr+moc3jCTmmCAE7e1kkxMzSUt2xmu5u1HZ1odxg9xoiIqK+bIYVI8mfGOGWvURE8RfXxMibb76J66+/HtXV1QDA7XspabT29Og+ZDgsFgih072e4qooKwtj8vOxp7095PiGhgYsYGKEiIgGIaWbrwKHGrDqYMUIEVFMxG0pzfPPP4/zzz8f1dXVkFJCSgkhREx+iKLF/iLJi8tpiIgoVqTmhQUtOqMKoGabGk8kjHuMMDFCRBQLcUmM1NbW4sc//nHvUpfDCY3DCZJof4iixf4iyWuWwXKarc3N6OESOiIiCpP01kLo1YiqOamx1S17jBARxV1cPgHefffd6O7u7q3uOJzMmDdvHubPn4+RI0ciJycHVqs1HpcnGpBRxYiTiZGEGl9YiByrFV0+X78xn6bhy6YmzBk6NAGRERFRqpE9+3XHUqG/CIBDVS0KgBC9+QLdkDIAIdgbjYgoGjH/BBgIBPDSSy8FJUWGDx+OZ599FieffHKsL0cUkWZWjCQtVQjMKC3FRwcOhBzfUF/PxAgREYVFekLfSwCkRn8R4GBVi5oLBEL334K/E7AWmBoTEVG6iXn94CeffILW1lYAB5MiNpsNK1asYFKEkgp7jCS32QZ9RjY0NHBJHRERhUV60qBiBAP0GeFyGiKiqMU8MbJ79+7efxZC4Pvf/z5mzJgR68sQRcWoYoRLaRJvRmkp9NosN7nd2N/ZaWo8RESUmowSI0ihxAgsBjvTsAErEVHUYp4YqaurA/BNX5Hzzjsv1pcgilqLUcUIe98kXK7NhqMKC3XH13N3GiIiCoPRUhphtA1ukhEGy35YMUJEFL2YJ0b6bqc7atSoWF+CKCoBKXUTIwJAlsoGZsnAaDnN54cSsEREREY0g+arqVUxYhArK0aIiKIW88RIWZ8PMx6PJ9aXIIpKu8cDTadHRZbF0i+5R4kx0yAxsqO1Fa0GVT9ERERS8wC+Bp1RBVCyTY0nGqwYISKKr5gnRqZNmwbgm8qR7du3x/oSRFHhjjSpYUxeHkocDt3xT2trTYyGiIhSjfTU6A9a8lLrixDDihH23SIiilbMEyMzZszAsGHDel+/9tprsb4EUVSM+ouw8WryEELgW+XluuNMjBARkRHDHWlSZKveXooTgM5SX80FqflMDYeIKN3EPDECAIsWLYKUElJKvPnmm9i0aVM8LkMUEVaMpA6jxMjW5mZ0er0mRkNERKnEeEea1Gm8ChyqxDaqGgmwaoSIKBpxSYzccsstGDNmDIQQ0DQNF198MZqbm+NxKaJBazbakYaJkaQyoagI+TZbyDFNSnzGJqxERKRDGjReTbmKERjvoiPZgJWIKCpxSYw4HA68/PLLyM09+At8+/btmD17Nl5++WVomhaPSxKFzahixMmtepOKKgSO5XIaIiKKgNFWvSm1I81hlnz9MTZgJSKKSty+Hp8+fTo+/PBDnHfeedi3bx+qq6tx0UUXobS0FPPmzcO0adNQVFSEvLw8qBFuj3rZZZfFOGrKBEY9Rlgxkny+VV6Od/buDTm2pbERLp+PCS0iIupHS6ceIwCEJReh99Q7XDFSaGY4RERpJS6fAouKinr/2ev1QkoJIQSklKivr8frr7+O119/PerrMDFCkWCPkdQytaQE2VYrun39G8v5NQ0b6utxwogRCYiMiIiSmXGPkdRLjMAomcOKESKiqMRlKU1bW1vvj/uID6FCiN4ESbQ/RJGQUrLHSIqxKArmlJXpjq/lchoiIupDBtyAT6+/nQoo+tvBJythkMyR3LKXiCgqcUmMAN8kQQ7/c6ixSH+IItXh9cKv0+cmS1Wh8O9XUpp3xBbgfW1saIDH7zcxGiIiSnYDVYuk5PMkK0aIiOImbomRWFSFsFqEYo3VIqlp2pAhyNLpReQJBLCpsdHkiIiIKJkZNV41qrxIakoWIHR6amk9UNB/ySkREYUnLokRTdPi/hMIBOIROqW5FvYXSUl2VcUsg+U0n9TUmBgNERElO8MdaVKw8SpwqALbIHab6jIxGiKi9BK3ihGiZMTGq6nrWwbb9q6vr4eXyVIiIjpE9uzTHUvZihEc3JlGj1VhYoSIKFJMjFBGMVpKwy1fk9ussjLYlNC/stx+PzZzOQ0RER2iGVaM6CcXkp5BUsfGxAgRUcSYGKGMwoqR1OWwWDCjtFR3nMtpiIjoMKPmqyldMWK0lIaJESKiiDExQhmlhc1XU9p8g91p1tXVwcflNEREhPTsMQLAsGLEqnSbGAgRUXphYoQyiuFSGiZGkt6coUNh1VlO4+JyGiIiAiADXYC/NfSgsB7c3SVFsWKEiCg+4vJJsLq6Oh7T9lNRUWHKdSg9SCm5K02KO7yc5vO6upDjn9TUYM7QoSZHRUREyUT2GFeLCCHMCybWjHqMcFcaIqKIxeWT4OjRo+N+0xFCwO/3x/UalF5cfj96dJZaWKSEqlOJQMllfnm5bmLk80PLaayqanJURESULIz7i6Rw41UAQrEDwgZIb78xVfhRmMtnGSKiSMTtt6eUMu4/RINh1HiV+9GkjtlDh8JisJzmi6YmkyMiIqJkYpQYSen+IocZVI2MHsYnGiKiSMQtMSKEiPkPUTSM+ovYmGhLGdlWK2YMGaI7zt1piIgym9FWvam8I81hRn1GRg3jsmAiokjE7bdnrCo6jkyIjB8/HsXFxTGZlzKPUcUIEyOpZd6wYVhXXx9y7LO6OlytabpNWomIKL0ZVoyk+FIaAIYVI6OGsmKEiCgScUmMfPDBBxG9z+fzwe12o6GhAdu3b8eqVauwbt06CCEgpYTL5cLzzz+PWbNmxThiygRcSpM+5g4dCosQ8IdIaHX7fPiisRGzysoSEBkRESWa7DHoMaLmmxhJfAhLHvS+zhnNihEioojE5bfnySefHLO51q1bhyuvvBJffvklampqcPrpp2PVqlWYOnVqzK5BmaGFS2nSRrbVimmlpdigUzWytraWiREiogwlDZbSpEXFiMFSmtHl/KqHiCgSSV9rPmfOHHz88ceYNm0ahBBobW3FBRdcAI/Hk+jQKMWwYiS9zC8v1x37rLYWfk0zMRoiIkoG0t8BBDpCjgWkBRB2kyOKPaM+KaPYfJWIKCJJnxgBgNzcXDz77LO9TVh37dqFP/zhD4kOi1IMm6+ml8PLaULp8vnwJXenISLKOEb9RbwBZ3o08zdqvlpuAfhMQ0Q0aCmzEHHq1Kk499xz8corrwAAHn30Udx5550JjopSiWHzVRPjoP4qKysjet8oux1f6yS8PqmpwYzS0mjCIiKiFGO0jMarOU2MJH6EYgUUB6D1f65x2BWoaE9AVEREqS1lEiMAghIjtbW1WL9+PWbPnp3gqCgVuP1+uPz+kGO+7m6oNqZGEqGtsREAsHDhwojeP+rUUzHnv/875NhndXX4sabBwt1piIgyhlHjVZ+WbWIkcWbJA7yhv/CxyQaTgyEiSn0plRiZNGkSgG+28N2yZQsTIxQWo8ar7uZmwKBfBcVPd2cnAGDhXXdhSgS7TfkBbJYSMkRpdKfXi61NTZjOqhEiooyhGS2lSZOKEQAQah4kQjcgtzIxQkQ0aCmVGNH6NFNsaOAvfgqP0TIaJkYSr7SiAmOmTInovbX796Pe5Qo5tra2lokRIqIMYthjJI0SIzBowGqVjSYGQkSUHlKqxnz37t1Br61Wdt6m8LQYJEZcbNKZ0kbm6m+9+GltLQLcnYaIKGMY9RjxpVFiRBg0YGXFCBHR4KVUYuSll14CAMhD3bbL+S0/hcloRxp3c7OJkVCsDcvJgd4eAx1eL7by/18ioowgpRxwV5q0YVAxwh4jRESDlzKJkQ8++ACvvvpq0DZrUyIsvafMY7iUhhUjKc2uqih16j/sflJTY2I0RESUMP42INAdcqi5PQAN6VNpLLiUhogoppI+MeL3+/G3v/0NZ599dtDxUaNGYdq0aQmKilINK0bS24icHN2xT2trEThUZUZEROnLaBlNda3PxEhMoOovI7WiCVIGTAyGiCj1xaX56r333hvxezVNg9frRVdXF+rq6rBmzRo0NDRASgkhRO//Rrq9J2WmAZuvUkobnpOD9fX1QIjdaTq8XlQ2N2NqSUkCIiMiIrNIzz7dsb21fowrMzGYOBNCBdQcINDVfwwBSG89hH1YAiIjIkpNcUmM3H333UFLXqJxuJ/IkfOVlZXhpz/9aUzmp8xguF0vl9KkPLvFglwp0anze+fzujomRoiI0pxmUDFSVevDuBnmxWIKNS9kYgQAZM8+gIkRIqKwxXUpjZQy6h8hRG9SREqJrKwsPPfcc8jPz49n6JRGvIEAOrzekGNWIeDrDr0emVJLocFymc/r6nqTrERElJ5kj9FSGr+JkZjDqM+IURNaIiLqL66JkcNJjUh/gODkyoknnoh///vfOPnkk+MZNqUZo2qRXFU1MRKKpwKDbXkbXC7s7egwMRoiIjKb0VKaqnTrMQIY9hkx6rdCRET9xWUpTUVFRVRLaYQQsFqtyM3NxdChQzF79mycc845mD17dgyjpExh1F+EiZH0YQPQvGMHiidMCDn+WV0dRrPSjIgobRklA/amZcVIPvRqIVkxQkQ0OHFJjFRVVcVjWqKIGO1Iw8RIeqn59FPdxMiq3bsxfhDLpkpKSlBRURGr0IiIKI6klMa70tSlX8WI4VKaHv3qGSIi6i8uiRGiZGJUMZLHxEjaaGtsRO3atTjmsstCjtf7fDjxO9+Bq6EhrPkcTie2V1YyOUJElAr8LYAW+n7vRx663WnYZ0pljxEiolhhYoTSHnuMZIbuzk50HjgA4XZDOhwhz7l66VKUGfQiOezA7t149Pbb0dTUxMQIEVEKkD36iQCfGGJiJCZSs3GwXWD/+5r01kNqHgjFbnpYRESpiIkRSnvsMZJZcgMB6LVZ7cnJwZiRI02Nh4iI4k8zqJDwiVITIzGPEAqg5gCBUHc9Cempg3CMMj0uIqJUFNddaYiSgVHFCJfSpB+nwf/fjW43PIGAidEQEZEZjJaOeNO1YgQDbdnLPiNEROEyvWJk9erVWLVqFdasWYO9e/eipaUFra2tUFUVTqcTZWVlGDt2LGbMmIFvf/vb+I//+A+o/PBKUWDFSGax+XzIUlX06CRAaru6uDsNEVGaMUqMpO1SGgCw5AGe0EPsM0JEFD5TEiOapmHZsmX47W9/i6+++qr3uJQy6Jz29na0t7dj586dWLlyJX77299i6NChuOGGG/DTn/4UVqvVjHApjfg1DW2e0E8MFkWBU2HRVLoRAIbl5GB3e3vI8QNMjBARpR3Zo78jTboupQEAoebpb9lr0HeFiIiCxf1TYV1dHU455RT86Ec/wo4dOw5up3boRwgR8ufIc2pra7F48WJMnz4d27dvj3e4lGZae3p0HxiKsrIghDA1HjLH8Jwc3bF6lwv+MBqwEhFR6jDaqteHdK4Y0U/0s2KEiCh8cU2MbN++HbNmzcLHH38cMhFyZALEKGEipcT27dsxf/58bNiwIZ4hU5ppNug3UZyVZWIkZKYhDgcsOtVAASnR6HKZHBEREcWLlFrGLqURaq7umNbDHiNEROGK21Ka5uZmnHXWWairq+tNcADfLJ8ZPXo05syZg9LSUuTn58Pv96O9vR21tbVYv349ampqACDove3t7Tj77LOxfv16DB06NF6hUxppMegvUqyzpSulPlVRMNTpxP6urpDjtd3dKDeoKiEiohTiawKkN/SYdQiksJkbj5kMK0aqTQyEiCi1xS0x8uMf/xi7d+8OSojk5ubi+uuvx9VXX41Ro4y3D9u5cyeefPJJPP744+ju7u6dp66uDtdddx2WL18er9ApjRhVjBRlZQE6/Uco9Q3LydFNjNR0d2Pmoeo0IiJKbUZb9Qr7cMBnYjBmUxyAsAIyxB/S3wbp7zDcuYaIiA6Ky1KatWvX4tVXXw1aLnPsscdi8+bN+J//+Z8BkyIAcNRRR+F3v/sdNm/ejLlz5/YusZFS4tVXX8Wnn34aj9ApzRjtSMOKkfQ2NDtbd8zt96Pdq/PtIhERpRSjJqOKfYSJkZhPCGFcNdLDqhEionDEJTHyu9/9rvefhRCYPn063nnnHYwePXrQc40dOxbvvPMOpk+fHnT8oYceijZMygDsMZK57Kpq+P9xbXe3idEQEVG8GDVeFVnpnRgBAGGQGNGYGCEiCkvMEyM+nw/vvvtub3WHqqp45plnkJur3xxqIHl5eXjmmWegqmrvvG+88Qa8/MaXBmBUMVLEipG0Z9RHpFZnmQ0REaUWo8arIs0rRgAAKvuMEBFFK+aJkbVr16Lr0AcOIQTOP/98TJ06Nep5p06divPPP7+3eWt3dzd3qKEBtbBiJKOVGyynae7pgScQMDEaIiKKB+PEyHATI0kMo4oR6d5rYiRERKkr5omR6uqDmenDCYyzzz47ZnOfc845Qa+3bdsWs7kp/QSkRKtOYkQRAgVMjKS9fJsNDot+j+k6LqchIkp5Rj1GhH2kiZEkCHemISKKWswTIw0NDUGvx44dG7O5D891eCeJ5ubmmM1N6afD40HgUIKur0K7HSp3JEl7QggMM6gaYZ8RIqLUJmUA0lurMyog7ENNjScRDCtG2GOEiCgscekxciSbLXZ7x1ut1pjNRemPO9IQYLycpq67G5pO8oyIiFKAtyH0VrUAYCuFUOzmxpMIag70Humltx5S85gbDxFRCop5YqS4uDjo9f79+uWNg3V4rsPLdEpKSmI2N6WfJqPGq1xGkzFKnU7d6iCfphkm0IiIKLlpBv1FlExYRgNACAWw5OmMSsiefabGQ0SUimKeGBkx4mD378PLXd55552Yzd13rqFD0788kiJnuFUvK0YyhqooKHU6dce5nIaIKHUZbtWbAY1XDxOqXmKEfUaIiMIR88TI/PnzoaoqgIOVHc8//zxaWlqinre5uRnPPfdcb8JFURTMnz8/6nkpfRlVApQwMZJRjJbT1DAxQkSUsoyqITJiq97D2GeEiCgqMU+M5OXlYd68eb3LXdra2nD99ddHPe/111+PtrY2AAerUebOnYuCgoKo56X0ZVgxwqU0GcUoMdLp9aLbp7M+nYiIkpphxUhWBlWMGCRGNCZGiIgGFPPECADccMMNAA4mMKSUeOGFF3DdddchEAgMeq5AIIDrrrsOL7zwQu98AHD11VfHNGZKP0YVI0WsGMkoTqsV+QaNoLltLxFRajJeSsOKEYAVI0RE4YhLYuTCCy/E5MmTAXyTHFm6dCm+9a1vDarnyMqVK3Hsscdi6dKlvceEEDj66KNx+eWXxzxuSi9cSkNHMqoaYZ8RIqLUJA2ar2ZSYkRYCnTHmBghIhqYJR6TKoqCv//97/jWt74Fn8/XmxzZsGEDzjzzTIwcORInn3wyZs2ahaFDhyI/Px9SSnR0dKCurg7r16/HqlWrsH///t4KkcNz2O12/O///m9vrxGiUDQp0aKzlEYBUGjPgO37KMjQ7Gxsb20NOdbgciGgaVCVuOSKiYgoDqT0Q3pqdUYVCFsGNenX3ZXmYPJIygCEUE0MiIgotcQlMQIA06dPx1NPPYUf/vCH8Pv9vYkNKSWqq6vx7LPP4tlnn9V9/+GECICgJTR//vOfcdxxx8UrbEoT7R4PAkf8HTpSQVYWPwBnoGKHA1ZFgU/T+o0FpESj242hBlUlRESUXKSnDkDoZdrCXg6hWM0NKIGEsMCnZcGqhPhSSPogvXUZtUsPEdFgxfXT4cUXX4wVK1YgOzsbUkoIIXp/DidJ9H76nltQUIBXXnkFl156aTxDpjRhtIyGW/VmJkUIlHHbXiKitMGteoN5AvrJfS6nISIyFvevzc844wxs27YNV111FVRVDZn4CPVz+DyLxYJLLrkEGzZswLnnnhvvcClNcEcaCsWozwgbsBIRpRbj/iKZlxjxakyMEBFFKm5LaY40YsQI/PnPf8bixYvx8ssv4/3338fq1avR2dkZ8vz8/HzMnz8fJ510Ei699FIMH555NzeKThMrRigEo6UyXT4fOr1e5BrsXkNERMnDODEy0sRIkoNxYmSviZEQEaUeUxIjh40aNQo333wzbr75ZgBAe3s7mpub0dzcDE3TUFRUhMLCQhQXF7O5KkWlxSgxwoqRjJVlsaDQbkerxxNyvK67m4kRIqIUwaU0wbwGS2k0VowQERkyNTHSV35+PvLz8zF27NhEhkFpqMlgKQ236s1sQ7OzdRMjtd3dOKqw0OSIiIgoErJnn+6YyMqcrXoP41IaIqLIJdXWHD6fL9EhUJowar5axMRIRjPqM9LodsMfYtcaIiJKPsYVI5mXGPEYJUY81UE7PhIRUbCYJkYaGxvx+uuvR/z+P/3pTxg7dizuvPNObNmyJYaRUaZpYfNV0lGUlQWbznbNmpRodLlMjoiIiAZLah5Ib13oQWGBsJWZG1AS0KQNLR2hty9GoBvwt5gbEBFRColJYmT79u248MILMWLECFxxxRURZ6Tff/99VFVV4fe//z1mzpyJ733ve0mZIPnNb37Tu3vOFVdcEZM533vvPSxatAgzZsxASUkJrFYrcnNzMXnyZFx66aVYvnw5/H5/TK7l8XjwzDPP4JJLLsHRRx+N/Px8WK1WFBUVYe7cubjxxhvx73//OybXSgRNSt0eIwqAQiZGMpoQwrAJK7ftJaJ48Xg8eOGFF3Dttddi9uzZGD58OBwOB7Kzs1FRUYH58+fjtttuw8qVK2Py7b6ZzxZmk55aAKH/HQnbMAihmhtQkthzQL/6mstpiIj0RdVjxO/347bbbsOf/vQnBAIBSCnR3t6OTZs2YebMmYOaS9M0rF69unerXgB47bXXsGLFCixevBi//OUvk6Ih644dO/Cb3/wmZvOtX78eV111FTZt2tRvrKurC5WVlaisrMSzzz6LMWPG4NFHH8V3v/vdiK/33HPP4aabbkJDQ0O/sdbWVqxbtw7r1q3Dww8/jJNPPhlLly7FxIkTI75eIrR7PPDrPFAWZGXBolMtQJljaHY2qnV2xart7kaBueEQUZrz+/1YsmQJHnzwwZD3XwBwuVzYt28f1q5diwceeACTJ0/GvffeiwsuuGDQ1zP72SIRpIf9RULZfcCH2ZNCfwGk9VRDyR3c8zkRUaaI+BNiQ0MDTjnlFDz88MPw+/1B32ysWrVq0POtX78eHR0dANBbjSGlRCAQwK9+9Suceuqp6OrqijTcmOjs7MRFF12E7hh9o/z3v/8d8+bNC/ngEsqePXuwYMEC3HPPPYO+lpQS1113HS6++GLdh7K+Vq1ahblz5+Kf//znoK+XSEb9RbhVLwHG2/a6/H7oL8QiIhqcAwcO4MQTT8Sdd94Z9v0XALZt24YLL7wQixYtgtfrDft9Zj5bJJJh49UM3Kr3MFaMEBFFJqLESEdHB0477TR88sknkFL2JjIOJzNWr1496DmbmpowYsQISCl7kyxHzrlq1Sqcc8458OjsJhFvPT09OP/88/HFF1/EZL6XX34Zl112Wb8SVpvNhmOPPRZnnXUW5syZA1uIrUPvvvtuPPDAA4O63s0334zHHnus3/HCwkKceOKJ+O53v4tJkyb1G+/q6sL3vvc9fPTRR4O6XiI1s78IDcCuqigy+LvQzqoiIoqBlpYWnH766Vi7dm2/MavVijlz5uCss87CGWecgaOPPjrkHEuXLsWVV14Z1vXMfrZIJOnZrzsmsjI3MbJ7v1FiZK+JkRARpZaInv4vuugifPnllwDQu7xFSgmbzYZLLrkEN91006Dn/M53voPq6mp8+eWXuOGGG5CTkxOUIDmcHLnqqqsiCTkqXV1dWLBgAd57772YzLdnzx788Ic/hHbE7heqqmLx4sWora3Fp59+ihUrVuDzzz/H/v37cccdd0Dp80HtZz/7GdatWxfW9ZYvX46HHnoo6FhhYSH++te/oq6uDqtXr8abb76Jbdu2Ydu2bTj77LODzvV4PPjBD36Q8IqdcLFihMJhtDtNexIs2yOi1HfZZZehsrIy6FhZWRkef/xxtLa24vPPP8eKFSuwcuVK7NixA1VVVbj22mv7LR3++9//PmDSwuxni0QzTIxk4I40h+0ySIxoPXtMjISIKLUMOjHy9NNP45133gm6aUspccUVV2Dnzp145plncNJJJ0Uc0OTJk/HQQw9hz549uPjii/slR/7xj3+YurRj69atmDt3Lt5///2YzXnrrbf2LhsCAEVR8OKLL+LXv/41ioqKgs4dMmQI7r//frzyyiuwWL5pCeP3+3HHHXcMeC23290vUTVkyBB89tlnuPzyy/t9azRp0iS8/vrruP3224OOHzhwAH/4wx/C/SMmlGFihBUjdIjRcpouIWBhEo2IovD222/jzTffDDo2depUrF+/Htdccw2yQ/wOGjVqFP70pz/h1VdfhdVqDRq79957DZfimPlskQy0Hv3EiJLBiZGd1QYVI+4qbtlLRKRjUIkRl8uFO++8M6hKxOFwYPny5XjqqacwYkTsbkRFRUV49tln8fjjj/ceO5wcueGGG0z5xb5s2TIce+yx2L59e8zm3LhxI15++eWgY4sXL8b5559v+L5zzjkHDz74YNCx999/f8CEzdKlS7F/f/DDw3PPPYfx48cbvu/+++/HhRdeGHRsyZIlaGlJ/q3eDJfS8MMuHVJot8Ouht61QAqB0mnTTI6IiNLJkiVLgl7n5ubi9ddfx/Dhwwd87znnnNPv/Z2dnXjiiSdCnm/2s0UyMG6+mrlLaRpbAwjAGXow0MEte4mIdAwqMfLiiy+isbERwMGkiNVqxSuvvDLgjTcaP/nJT/DQQw8FJUKqqqqwYsWKuF1zx44dOO+883D55ZfD5XLFdO4jEz3AwSUtd955Z1jvvf766zF9+vSgY6H6hhxp6dKlQa/POOMMnHrqqQNeSwiBhx9+GHa7vfdYe3s7/vGPf4QVayI1cSkNhWGgbXuHzp5tYjRElE4aGxvxwQcfBB279tprMWbMmLDnuPbaazF27NigY3rPPmY/WySa9HcC/rbQg0o2YCk0NZ5k4xXlumOam8tpiIhCGVRi5OmnnwaA3oart9xyC04//fS4BHak66+/HgsWLOi9LgD8+c9/jvl1GhoacN1112Hq1Kl47bXX+o3fcMMNOOGEEyKePxAI4MUXXww6dskll8Dp1Mns9yGEwDXXXBN07K233tJN3mzYsAFfffVV0LGrr7467HjLy8tx3nnnBR176aWXwn5/orSw+SqFyajPSNns2Sw5JqKIrF69GoFAIOjYf/7nfw5qDlVVcc455wQd27RpU7/fS2Y/W5ipuroaGzZs6PezbdM7uu/pkcXYuHFj0Pl9+7ykO6PEiGSfESKikMJOjHi9XnzyySe9iYns7GwsXrw4boH1df/99wct4Vm9enXMP7T85je/wWOPPdavm3tubi6eeuopPPzww1B1Su/D8dlnn6GtrS3oWN9GpwPpe77L5cJbb70V8tyVK1cGvbZarTjzzDOjut6aNWsGtd2g2TQp0aJTMaIAKGRihI5Q5nRCr82qs6QEjX1+FxARhWPbtm1Br202W7+qjHD0rRjx+Xz9lrSa/WxhlurqakyaNBGzZ8/u93PXTy/Tfd+7q7f1O3/hwoUAgM4UaSIfLa8Ypjsm3VXmBUJElEIsA59y0MaNG+Hz+Xq30L3ggguQk5MTz9iCTJkyBSeffDI+/PBDAEB3dzc2bdqEmTNnxvW63/3ud7F06VKMHBn9etW+W94qioL58+cPao7hw4ejoqIC1dXf7EX/4Ycf4oILLhjwejNmzAjZ7M3IcccdF/Ra0zSsWbMm5PWSQbvHA79OwqwgKwsWbsNKR7CpKoodDt3lV18bLMsiItIza9Ys3HDDDaitrUVNTQ0CgUC/HWDC0WNQAXmY2c8WZmlqaoLL5cZfH7oUk8aXBY2V2HcB+DLk++bNnY5P31wYdOytD7bh7gf+Gda/z3TgMVpKw4oRIqKQwk6M7Nq1C8A3y2iiWVISqdNOO603MQIAX331VdwSI1OnTsV9992Hs846K2Zzbt26Nej12LFjkZubO+h5jjnmmKCHl/Xr14d1vUi+rRozZgxycnKCtupdv3590iZGjBqvFrFahEIYmp2tmxjZlSEP0UQUWwsWLMCCBQuinqfvfdxut6O4uNjwnHg/W5ht0vgyzDwm+MupQOtuyO7Q55eWDcfQ3ODzt++qj1d4SclwKQ0rRoiIQgr764vW1tag1wPtahIPh5Mgh5fUxGOHlDlz5uDZZ5/F5s2bY5oUAdBvjevRRx8d0Tx9/90fTlodyeVyBT3gRHO9cePGDXi9ZGG0VW8JG69SCEZ9RvZ7vej26W99SEQULx6Pp992v1OmTOl3npnPFkkj0K4/ZskzL44kZdxjZC+kDOiOExFlqrATIx0dHUGvCwoKYh3LgEpKSoJe911TG61f/OIX+Pzzz3HJJZdEVPI6kJqamqDX4WzZF0p5efANr7GxsV+TtNra2n49WGJ1vb1790Y0jxmMEiPckYZCybfZkKW3bS+AzYd24iIiMtPTTz+NpqamoGN9m7EC5j5bJAvp79AdE0yMQIoswFamM+iF9NSEHiMiymBhf/p39PlQmYh1mhZL8Mofm80W0/mLiopiOl9ffZuWlpXp3LQGMGTIkH7Hmpubg17X1dX1OydW1+v7oJZMjJbScEcaCkUIYVg1srE+s0qwiSjxGhsb8fOf/zzomKIo+K//+q9+55r5bJEMpJRAoFP/BJWJEQBQsvS3hpY9VeYFQkSUIsJOjOTn5we9jscyloH0vUFHsoY2UTo7O+H1eoOO5eVFdvMO9efuu9Qp1P8/sbpe32slE1aMUCSGGiVGGhqgcdteIjKJpmm48sor+30JcfHFF/dbJmP2s0VS0FyA1NkxTHFAKFZz40lSwjFad0y6d5sXCBFRigg7MTJmzMHM8+H+Hlu2bIlPRAYOX/PwEpG+DciSmcfj6XfM6XRGNFeo9/Wt4Inn9cKpFvJ4PP2WX5nBMDHCihHSYbRtb5vHg6p2g/XsREQxdMcdd+CNN94IOlZUVITf/e53/c41+9ki1PVNv9cbLKNhf5FvCIOKEc3NnWmIiPoKOzEybdq0oNcff/xxzIMZyAcffBD0evLkyabHEKlQDy99lwaFSw3RD8HXp0FkPK/X91qh3HfffcjPz+/3TVa8GS6lYcUI6bCqqmFz3g19StWJiOLh17/+NR544IGgY0IIPPXUU/16gADmP1v0lYh7vQwY9BdR83XHMo3iGKs7Jt1fmxgJEVFqCDsxUlxcjAkTJgA4WLGxcuVKNJrYlLCxsRErV67srVix2+298aSCQKB/B/BQDyHhCPU+TdNMu17fa4Xys5/9DO3t7THvA2NEkxItOhUjAkAhK0bIgFGfkQ3sM0JEcXbffff16ysCAPfccw/OPffckO8x+9mir0Tc61kxEh7hGKc7pjExQkTUz6C2Xjn//PN7l7H4/X784Q9/iEtQodx///3w+w+uKRVC4KSTTorLzjHxYrX2X/N6+M8zWKG+wbHb7aZdr++1QrHb7RGvc45Uu8cDv04viAK7HZYU+vtC5jNKjOxsbUWnydVPRJQZpJS49dZbcdddd/Ubu+6660ImSw4z+9ki1LjZ93rp11/ayB1pviHswwFF5wshX6Phzj5ERJloUJ8UL774YgAHExNSSjz44IPYunVrXAI70ubNm/HYY4/1XhcALrzwwrhfN5ZCPVxEWnoazsNLPK8XTmIkEZoM+ouURLjmmjJHrs0Gp04JugSwmctpiCjGfD4frrjiCixZsqTf2KJFi/DII48Yvt/sZ4ukYLCUhjvSfEMIZYA+I6waISI60qASI1OnTsWZZ54JKSWEEPB6vTjnnHPiuqSmoaEB3//+94PW0RYWFuL73/9+3K4ZD3l5eb3LgA7r6uqKaK7Ozv7b1GX3+ba77y5Csbxe32slC8PECPuL0ACEEIa707DPCBHFUktLC04//XQsW7as39hPf/rT3i+EjJj9bJEMjCodWDESTDFYTiNdu0yMhIgo+Q16bcHdd9/du4RFCIE9e/bg+OOPx1dffRXz4Hbu3ImTTjoJO3fu7K0WEULg9ttvN710M1oWi6VfzG1tbRHNFep9ZWVlQa9D7dgTq+v1vVayYGKEomW0nGZTQwMC3LaXiGJg586dmDdvHlatWtVv7P777+/XgFWP2c8WiSZlAAjoJX4EoPbfcjiTCadBYoQVI0REQQadGDn22GNxww039C5pEUJg165dmDVrFu6///6wtnIdSHd3N+6//37MmDGjNyly+FrTp0/HTTfdFPU1EmHYsGFBr+sjbOjY931ZWVnIzQ1+GOh7rVheL9kelA5jYoSiVep0QtH5hrbD68XXEX7gICI67MMPP8S8efOwc+fOoONWqxV/+9vfcMcddwxqPjOfLRIu0IWDixtDUHMhBHuJHcmoYkRzs2KEiOhIEd1BfvOb32Du3LlByRGXy4XFixdj+PDhuOWWW7Bq1aqQ3dL1+Hw+fPDBB7jhhhtQUVGBxYsXw33EB10pJQoKCvDSSy+Z2/08hsaNC75BVVdXRzTP3r17DecFgNLS0n4PNLG63tix+lvAJVKjy6U7NoSJEQqDRVEM/65s5O40RBSFZcuW4YwzzkBLS0vQ8YKCAqxcuRKXXXbZoOc089ki0dh4dXCEY7zuGCtGiIiCRbTZvcPhwJtvvonjjz++t6Lj8FKX1tZWPPTQQ3jooYfgcDgwffp0TJkyBRUVFSguLobD4YDP54Pb7UZTUxP27t2L7du3Y8uWLb0Nw45MuBx+PWTIEKxcuTJpP5SHY8qUKXjjjTd6X+/YsSOiefq+b8qUKSHPmzx5Mj799NOortfd3Y39+/eHdb1EY8UIxcLQ7GzU6yTZNjY04D8nTjQ5IiJKB0uWLMFtt93W+4xz2JgxY/Dmm29i0qRJEc1r9rNFQhntpMLGq/2IrFEAVAD9v6iUngOQgR4IVWfnGiKiDBNRYgQASkpKsHbtWlxwwQX48MMPe5MjwDeJDZfLhbVr12Lt2rWGc/V9SDiykZiUErNnz8Zzzz2H8eP1M9+pYO7cuUGva2trUVNTE3LZix6fz4fNmzcHHZs1a5bu9Y5MjKxbt24Q0R60YcOGfv//6F0v0ZgYoVgoz87GZp2G0rva2tDW04OCLD5IElH47rvvvpDb8c6bNw+vv/46hgwZEvHcZj9bJJI02JGGFSP9CcUGkVUB2bMnxKiE7NkNkT3Z9LiIiJJRVIsxCwsL8c477+BXv/oVsrKygio9jqwiGein73uAgwmR7Oxs3HPPPfjkk09SPikCACeddFJv49rD3nvvvUHNsWbNmqAdegDgtNNOC3nuKaecEvR6586d2Ldv36Cu98477wS9zs/Px5w5cwY1hxk8gQA6dLYotKkqclN0+RWZL8dqhd2gyeqmOO7CRUTp55FHHgmZFDnvvPPw/vvvR5UUAcx/tkgoo4oRJkZCEoZ9RrichojosKi7VKmqisWLF6OyshI//vGP4XA4dBMeRj8Aet83dOhQLF68GFVVVfj5z38OiyXiwpakMmTIkH7f7Dz//PODmuO5554Lel1eXo6ZM2eGPPf000/v149lMNeTUvY7/8wzz4SqqmHPES/V1dXYsGFD789qg2qYHCGwcePGoPMP/1RWVpoYNaUCIQTyNU13fAP7jBBRmN54442QDeN//OMfY/ny5XDEoJrR7GeLRDLsMcKlNCEZb9m7U3eMiCjTxKx9d0VFBZ544gns378fS5cuxbnnnoucnJywK0amTJmC66+/HitXrsS+ffvwq1/9CkVFRbEKL2n0baz21ltvYf369WG9d8+ePXj22WeDjl155ZX9vik6LC8vD+eee27QsT/+8Y/o6tLb6i7YCy+80K9r/lVXXRXWe+OpuroaEydNwuzZs3t/Fv7kJ7rnV37+edC5Qe9buBAAwv53Qpkh36BiZHNjIwIGiRMiIuDgvWrhwoXQ+vy+WLRoEf785z/r3rsjYeazRUIZJEZgKTAtjFQinEfpjmlMjBAR9Yp5KUZBQQGuvvpqXH311QCAqqoqbN++HQcOHEBnZye6u7thtVqRk5ODkpISjB8/HkcddVTybQkXJ5deeil+/vOf93akl1LiBz/4AT755BOUlJTovs/lcuGiiy4K2g7Z4XDgmmuuMbzejTfeiBdffLH3dU1NDS6//HK8+OKLhg8927dvx7XXXht0bNq0aTj11FMNr2eGpqYmuF0uXP+732H4oWa8TUKgSuf8KdOnY8FLL4Uc27h6Nf7v4YfhjsE205Q+cqVEwOOBarf3G+v2+bCztRUTi4sTEBkRpYqf/OQnaG8P/iC/YMECPProozG/ltnPFokgtR5AekIPCiugsPdTKIpBYkS6ImvUS0SUjuK+RmX06NEYPXp0vC+TMnJzc7F48WL89Kc/7T22a9cunHbaaXjppZdC9lKpra3FD37wg37f/tx8880YMWKE4fWOP/54nH322VixYkXvsZdffhkXX3wxnnzyyZAJqU8//RQXXXQRWltbg47//ve/D2qMm2jDx47FmENd811NTUCf7Q8PKxsyBGN0PsQe2L07bvFR6lIANHzxBcp1+ulsaGhgYoSIdL399tt4++23g46Vl5dj2bJlcanEMPvZIiEMq0Xyk+r5JJkc7DGitzPNPsiAC0J1mh4XEVGyScI6yfR344034oQTTgg6tnnzZkyfPh3XXHMNVqxYgfXr1+Ott97CrbfeiilTpmD16tVB58+cORO/+MUvwrre0qVLUdznQ9wLL7yAiRMn4p577sE777yDdevWYfny5bj44otxwgkn9GvSumjRIpxxxhkR/GnN4fL7dcecadKjhsxVZ1CGzj4jRGTkt7/9bb9jtbW1KC4uDrv3mt5PVVVVyGua/WxhNsP+IlxGo0sodgjHKN1x9hkhIjqInxgTQFVVvPbaazjttNOwcePG3uMulwtPPPEEnnjiCcP3jx49Gq+88grsIcr8Qxk2bBj+9a9/4bTTTguqAqmpqcHdd9894PvPPPNM/OEPfwjrWoni8vl0x5xWq4mRULqoN0iMVHV0oNntRjG3gSaiPmpra/Hhhx+afl2zny1MZ1gxwsarRhTnBATcoStkNfdXUHKnmxwREVHyYcVIghQVFeHdd9/FWWedNaj3HXfccVizZg1GjdLP/ocya9YsvPfee5g8eXD71V911VV47bXXkvdB6RBWjFCsddfXo9jg787GhgYToyGiVLFq1aqEXdvsZwszGe9Ik29iJKlHOIwasH5lYiRERMmLiZEEKioqwooVK/Dqq6/ixBNPNFx3PHXqVDz55JNYs2ZNxGt/Z86ciU2bNmHJkiWYNGmS7nlCCJxxxhl499138eSTT/bb8jfZSCkNEyMOJkYoQuOy9Jv5fV5XZ2IkRJQq9u/fn9Drm/1sYRajxAh3pDGmOCfojkkmRoiIAHApzaDFozz23HPPxbnnnouGhgasXbsWtbW1aG5uhtPpRHl5OY499liMGTMmJteyWq245ZZbcMstt2DHjh3YsmUL6urq0NnZifz8fIwaNQrHHXdcSm2V7AkEoOlsr5qlqlCTcctBSgnjsrLwmc5WzpsbG+H2+5l4I6Igt956K2699dZEh2Hqs4UpDHuMsGLEiHAerTvGihEiooP4RJ9ESktLcc4555h2vQkTJmDCBP1vEVKF4TIa9hehKFTY7ci2WtEdooeNX9Owob4exw8fnoDIiIjCY/azRTxIzQdo3TqjCqBmmxpPqhFZIw9uZ6z19B/0NUH6miGs3GmNiDIbv0qnlGfYeJXf5lMUVCEwu6xMd/zT2loToyEiylCBDv0xSz6E4OOsESFUCEf/LZsP07gzDREREyOU+lgxQvE0r7xcd2xDfT28gYCJ0RARZR7jrXq5jCYcilO/Aat0bTcxEiKi5MTECKU8VoxQPE0fMgR2VQ051hMIYEtjo8kRERFlGH+b/hgTI2ERzom6Y1r3NhMjISJKTkyMUMrjVr0UT3aLBTNKS3XHP+PuNEREcSX9+ktpWDESHiV7su6Y1l1pYiRERMmJiRFKeYYVI1xKQzHwLYPlNJ/X1SGgaSZGQ0SUYYy26lWZGAmHYlAxIt27IDWPidEQESUfJkYo5bFihOJtdlkZVCFCjnV6vahsaTE5IiKizCENltKwYiQ8wloAYdfZRU36IV27zA2IiCjJMDFCKS2gafDoNL9UhIBNpzcE0WBkW604pqREd5y70xARxYsGBDp1xgRgyTM1mlQmnJN0x9hnhIgyHRMjlNIGqhYROt/yEw2W0XKaz2prIaU0MRoiosxgU9wAdH6/qjkQgl+AhMuwz4iLfUaIKLMxMUIpjVv1klnmDh0KvTRbc08PdrW1mRkOEVFGsCldumNcRjM4RokRyYoRIspwTIxQSuNWvWSWgqwsTCgq0h3/6MABE6MhIsoMNrVbf5CJkUER2UZLabZDSjYSJ6LMxcQIpTRWjJCZjJbTfHzgAAJcTkNEFFM2RT8xIiwF5gWSBoStHND7d6Z1Q/ZUmxoPEVEyYWKEUhorRshMxw0bprucps3jwdamJlPjISJKd3aDxAgbrw6OEAKKYQPWL0yMhogouTAxQimNFSNkpmKHA5OKi3XH1+zfb2I0RETpz2gpjVC5lGawDBuwdjExQkSZi4kRSmmsGCGznThihO7Yp7W18OpsH01ERIMjhPFSGvYYGTyRM013TDIxQkQZjIkRSlkSA2/XSxRr88vLYdHZBtrl92NDfb3JERERpafyYhWK0GkIqjghFJu5AaUBJecY3TGteyuk1H+uIiJKZ0yMUMryAdB0ml3aVRWqwr/eFHs5NhtmlpXpjq/mchoiopgYM8JgSSyrRSIi7CMAS2HoQc0N6dplbkBEREmCnxwpZXl0vrUHgGz2F6E4MlpOs6GhAd0GS7yIiCg844br38sFEyMREUJAMVhOwz4jRJSpmBihlOU1GGNihOJpdlkZHDpLtfyahrU1NSZHRESUfsYaVIwwMRI548TIZhMjISJKHkyMUMpixQglil1V8a3yct3xNQcOmBgNEVF6Gj/SoIcIEyMRM+4zwooRIspMTIxQymJihBLphOHDdce2NjWh2e02MRoiovQzfqRRxUiBeYGkGaOKEdm9AzLQY2I0RETJgYkRSllcSkOJdExJCQrs9pBjEsAH+/aZGxARUTqRmmFiRLeBKA1IWIsh7HrJ/QC07q2mxkNElAyYGKGUZVgxwq16Kc5URcFxw4bpjr9fXa27axIRERmzoBnOLJ3HVG7VGzXDPiOd602MhIgoOTAxQilJKIphxYiTFSNkgm9XVOiONbhc+LKpycRoiIjSh10aNLHmMpqoKTkzdce0zo0mRkJElBz4tTqlJEdJCaBTMeK0WKAYVJMQhauysnLAc4ZarajT2Z73xU2b4C8uBgCUlJSgwiCRQkRE37DJWt0xYeUymmgpubN0x7TODZBSQvBZiogyCBMjlJKyy8r0x1gtQlFqa2wEACxcuHDAc8eceSZmLVoUcmxrRwd+f9FF8LS3w+F0YntlJZMjRERhsGn6FSNsvBo9kT0ZULIALUSjVX8LZE8VhGOM+YERESUIEyOUkpgYoXjq7uwEACy86y5MmaX/rRoA+AFskRJaiG/WFKsVP3n6aWi7duHR229HU1MTEyNERGEwqhhh49XoCcUKJWcatI7PQo5rneuhMDFCRBmEiRFKSU4mRsgEpRUVGDNlyoDntdbVYW9HR8ixFrsdk8eOjXVoRERpzXApDStGYkLJnW2QGNkAlF5ockRERInD5quUklgxQslkXH6+7pjb70cb12kTEYVNBnpghV7zagWw5JkaT7oy7jPCnWmIKLMwMUIpyVlaqjvGxAiZrSgrC4V2u+54g8JftURE4ZI9VRDQ2e7ckgchVHMDSlNKrv7ONNK9G9LXYmI0RESJxad1SkmGFSMWrhAjcwkhML6gQHe8U1GQP4ZrtYmIwiF79uiOCfYXiRlhyYdwHKU7rnV8bmI0RESJxcQIpRyflHAUFYUcU4RAFhMjlAAjc3NhM6gMOfr8802MhogodWlu/cQI2F8kppS8ObpjgY5PTYyEiCixmBihlNPu9+uOOS0WCPZzoARQFQVjDXqNjDjhBMO/u0REdJA0SIwIKytGYknJ+5bumNa+1sRIiIgSi4kRSjlGHy7ZX4QSaXxhIfTScoqq4vOuLlPjISJKRVrPbt0x7kgTW6pBYkS6d0L6mk2MhogocZgYoZTTFgjojjExQonksFgwKk9/t4SN3d1o93hMjIiIKLVIKSHdVfonsMdITAlbCYRjvO54oJ3LaYgoMzAxQimnjRUjlMSOLtR/aPdJidd27TIxGiKiFONvAQIdoceEDVAc5saTAZS8ebpjWgeX0xBRZmBihFIOK0YomeXb7RjqdOqOv11VhbaeHhMjIiJKHZpbfxkNLAXsIxYHar5RnxFWjBBRZmBihFIOe4xQsptUXKw75g0E8CqrRoiIQmLjVfMpecfqjsme3ZCeWhOjISJKDCZGKOW0s2KEklyJw4Eyg6qRf1VVoZVVI0RE/cgeg8QI+4vEhbAWQTgn6o4H2j4yMRoiosRgYoRSisvng1vTQo5ZhIBN4V9pSg5TjKpGNA2v7NxpYjRERKlBM6gYAXekiRs1/3jdMa19jYmREBElBj9FUkppcLl0x7KtVq49pqRR7HAY9hp5Z+9eNLvdJkZERJT8DJfSMDESN0rBCbpjgbaPIaX+MmYionTAxAillIESI0TJxKhqxKdpeJlVI0REvaTmg/RU65/AxEjcKHlzASUr9GCgA1rXF+YGRERkMiZGKKXUMzFCKaTI4cDQ7Gzd8Xf37kVtV5eJERERJS/pOQDoVSaouRAK7/PxIhQ7lDyD3WnaVpsYDRGR+ZgYoZTCihFKNUZVIwEp8Y/t202Mhogoecke/a16uYwm/lTD5TTsM0JE6Y2JEUopjUyMUIopyspCgU7DYAD4pKYGO1tbTYyIiCg5sfFqYikFJ+mOya4tkL5mE6MhIjIXEyOUUriUhlLR8EAA0mCb6We3bYOU0sSIiIiSj2HjVSu36o03kTUGwj5CZ1Qi0PqBqfEQEZmJiRFKGZqUqO/u1h1nYoSSlQPA3g/0Hyi3NjdjY0ODeQERESUh2cOKkUQSQkApOEV3PNDyvnnBEBGZjIkRShktPT3w6ixJyFJVWBT+dabkte0f/4DFYPzZbdsQYNUIEWUyYQGETWeIFSNmUIv+Q3dMa/8IMtBjYjREROYxek4nSip1BtUiObbQD1JEycLd3IwxHg922u0hx6s7O/HMRx9hmsEuNoeVlJSgoqIi1iESESWUffLfIKUG6anBzi/fwR9/ezMWX3ssSgo0QM1NdHgZQck7FlCzgUCIZy7NDa3jE6iF3zY/MCKiOGNihFJGrVFihMtoKIm1NTYCAJb88Ic484knYMsN/YD/fzt34keLFkHzeg3nczid2F5ZyeQIEaUdIRSIrBHoVqZj6Uvt+OEPp6Ns/MhEh5UxhGKHWnASAs1vhRwPtLzHxAgRpSUmRihlGFaMMDFCSay7sxMA8J833ohipxP7dc5zlpTg+uefR7nBLjYHdu/Go7ffjqamJiZGiIgo5pTCU/UTI63vQ8oAhFBNjoqIKL6YGKGUUdvVpTvGpTSUCkorKjB7wgS0VFXB5feHPKfBasWcMWNgU/nQSURE5lMLToYPKoAQu6n5GqF1boCaN9f0uIiI4ondKillsGKE0oGqKJhaUqI77tM0VLa0mBgRERHRN4S1AIpB4kOvmoSIKJUxMUIpQUqJOpdLd5yJEUolFbm5yNdpwgoAu9ra4PL5TIyIiIjoG2rxmbpjgeZ/QUr9JZ9ERKmIiRFKCa0eD7yBECWdAOyqCiuXHVAKEUJgmkHViCYlvmxuNjEiIiKib6hFZwAQoQd99dA6N5oaDxFRvDExQimBy2go3ZQ5nSh1OnXH93Z0oM3jMTEiIiKig4RtCJTcObrjXE5DROmGiRFKCYZb9bLxKqWggapGAOCLQ9v8EhERmU0t/o7uWKD5n5AydBNxIqJUxMQIpYQ6ox1pWDFCKaowKwsjc3N1x+tcLjQY9NYhIiKKF7XYaDlNI7T2T0yNh4gonrhdL6UEw4oRJkYohU0tLsb+zk5InfEtjY04taICQug8nBIRER2hsrIyJvN4PB4cJSYiW4aer3HHU6ixZoc1V0lJCSoqKmISFxFRPDAxQinBsMcIl9JQCsux2TCuoAC72tpCjrd6PDjQ1YURBpUlREREdQ0dEAJYuHBhTOYTArhsQS4ev6ss5LjVtRonn/U3dLn0UvvfcDodqKzczuQIESUtJkYo6Ukp2XyV0trkoiJUdXTAr4Xe/rCypQXDc3JYNUJERLraOtyQEvjjPWdj/pwJUc311gfbcPcD/8Sx80+EJndBEf3vT84sBetfuxBt3lGGc1XuqscVNz6DpqYmJkaIKGkxMUJJr93jQY/OVr02RYGNW/VSirNbLJhYWKi7RW+bx4O67m6U5+SYHBkREaWa8aOLMfOYkVHNsX1XPQBg1IhSqE4J6d4Z8ryKokaMGXJCVNciIkoGbL5KSS/basWvjj8e182Yge8ddRQmORxo3bULipRcRkNp46jCQtgNknyVLS2QcuByZSIiolgSzom6Y9KzH9LfaWI0RETxwcQIJT2rqmJScTG+XVGBiydNwvnFxXj/pz/FTL8fJ48YkejwiGLCoig4urBQd7y5pweNbreJEREREQEiqwJQHLrj0rXDxGiIiOKDiRFKWQIHP0wSpYtxBQWwGvydrmxpMTEaIiIiQAgFwqnfs0RzbWdFIxGlPH6qJCJKElZFwVEGVSMNLhe62ICViIhMphgkRuBvBXwN5gVDRBQHTIwQESWRowoKYDFIftSySoqIiMxmHQJYinSHte5KE4MhIoo9PmETESURm6piXEGB7ni7oiBvlPHWiERERLEkhICSbdCE1bUDUvOZGBERUWwxMUJElGSOLiyEYlA1ctQ555gYDREREQz7jEB6dbf0JSJKBUyMEBElmSyLBWPz83XHR558MroCARMjIiKiTCfUHIgs/YpFresLE6MhIootJkaIiJLQhMJC6NWMqFYr1nd1mRoPERGRyD5Gf9DXAOllE1YiSk1MjBARJSGn1YoRubm64xu6u+Fh1QgREZlIZI0C1Bzdca37SxOjISKKHSZGiIiS1NEGW/e6NQ2r9+0zMRoiIsp0QihQsqfojkvXV5Ca18SIiIhig4kRIqIkVZSVhRKHQ3f8jd27oUlpYkRERJTpRPZkQG+xp/RBunaYGg8RUSwwMUJElMSMqkYOdHVhUwPXcxMRkXkONmEdozuudX8ByaQ9EaUYJkaIiJLYsOxsZFutuuNvfP21idEQEREBIseoCWsz4K0zLxgiohhgYoSIKIkJIXBUQYHu+JamJlS1t5sXEBERZTxhHwmoebrjWtdmE6MhIooeEyNEREluTH4+rIr+r+t/7tljYjRERJTphBBQcqbqjkv3Lkh/p4kRERFFh4kRIqIkZ1EUjM3P1x1fs38/2j0eEyMiIqJMJ5yTof9RQkLr2mJmOEREUWFihIgoBYwvKNDbAwA+TcM7e/eaGg8REWU2oTognBN0x2X3Vm7dS0Qpg4kRIqIU4LRaMSI3V3f87T174NM0EyMiIqJMp+TO0B+UHkjXdtNiISKKBhMjREQpwqgJa5vHg08OHDAvGCIiynjCWgJhH6E7frAJK7fuJaLkx8QIEVGKKHY4kG1QFfLG7t2Qkg+gRERkHpEzQ3/Q34ZcK7fuJaLkx8QIEVEKKTVIjOxub8f2lhYToyEiokwnskYDlgLd8RL716bFQkQUKSZGiIhSSKGUcDc3646/uXu3idEQEVGmO7h17wzd8RxrE6YdZTMvICKiCDAxQkSUQhQAX7/5pu74Z7W1aHC5zAuIiIgynnBOBIRdd/ynlxaaGA0R0eAxMUJElGL2/OtfsOiMaQDe2rPHzHCIiCjDCcUKkTNFd/yC/8iBTasxMSIiosFhYoSIKMV4OzsxNTtbd/y9vXvh9vtNjIiIiDKdkjMdeh8tFEWgOPC6uQEREQ0CEyNERClobk6O7pjL78eH+/aZGA0REWU6oeZAZE/UHc/XVkPz1JoYERFR+JgYISJKQUOsVkwbMkR3/M3duxHg1r1ERGQiJWc2ABFyTCAAf83/mhsQEVGYmBghIkpRZ40dqztW192NT2u4npuIiMwjrAUQjvG644GGFyB9+jurERElChMjREQpakZpKYYZ9Bp5eedOSFaNEBGRiZTcOfqDWg/8tX8zLxgiojAxMUJElKIUIbBg3Djd8aqODmxsaDAxIiIiynTCVgKRNVp33F/3LKS/w7yAiIjCwMQIEVEK+/bIkSiw23XHX9m508RoiIiIBqgaCXTCX/MX84IhIgoDEyNERCnMpqo426BqpLKlBZXNXM9NRETmEfZyCPtw3XF/7d8gvU0mRkREZIyJESKiFHfG6NHItlp1x1k1QkREZhOGvUZc8B143LxgiIgGwMQIEVGKc1gs+M6YMbrjGxoaUNXebmJERESU6YR9JGDTrxoJ1D8HzXPAxIiIiPQxMUJElAa+O2YM7KqqO76cVSNERGQiIQTU/Pn6J0gf/PseMS8gIiIDTIwQEaWBPLsdp40apTv+SU0N9rBqhIiITCTs5ejwlumOBxpfgeb+2sSIiIhCY2KEiChNnDNuHCxC6I4/t327idEQEREB9T2TDUY1+Kr/aFYoRES6mBghIkoTxQ4HTh45Und8Q309tnOHGiIiMlFPIB//906n7rjW8jYCHetNjIiIqD8mRoiI0siFRx8Ni6L/q33Ztm2QUpoYERERZbpfPdkCafCxw1f1a0ipmRgREVEwJkaIiNLIEKcTZxj0GvmqtRUf19SYGBEREWW6r/f70KZ8W3dcdn+JQOMrJkZERBSMiREiojTzvaOOMtyh5tlt2+AJBEyMiIiIMl2T5UJAceiO+6p/D+lnk3AiSgxLogMgIqLBq6ysNByf43Ti487Qa7qb3G48vno1TsrPR0lJCSoqKuIRIhERUS+/KIJl+E/g3/fH0Cf4muGrfhC2sfeYGhcREcDECBFRSmlrbAQALFy40PA8NSsL/++xx+AoLg45vrqlBb+47DL4W1qwvbKSyREiIoo7S/mPEKj/P0hv6CWdgfrnoA05H0ruDHMDI6KMx8QIEVEK6T5UBbLwrrswZdYsw3ObhECVzphitWLB73+P5y++GE1NTUyMEBFR3Ak1C5ZRd8C380adMyS8Xy+GfdrLEIrd1NiIKLMxMUJElIJKKyowZsoUw3NGS4n26mq0ejwhx31OJ8Z95zvxCI+IiCgktfg7CDS8CK39o5Dj0v0V/Pv/BGvFLSZHRkSZjM1XiYjSlBACs8vKDM855oor0OTzmRQRERFlOiEErGPuBoRN9xz/gSegdW42LygiynhMjBARpbHCrCwcVVCgO67a7Xi9pQU+7lJDREQmURyjYBmxyOAMDd6dt0D6QzcRJyKKNSZGiIjS3NSSEjgs+isn63w+/HXrVhMjIiKiTGcZdjWEc6LuuPRUw7f755BSmhgVEWUqJkaIiNKcRVEwd4AlNSurqvB+dbVJERERUaYTig228b8FhH7iPtD8JgJ1z5oYFRFlKiZGiIgyQFl2tuGSGgB4cssWbGtuNicgIiLKeEr2ZFiGX2t4jq/qfxBo/7dJERFRpuKuNEREGeKYkhLUu1zo8HpDjvs0Db/97DP8+vjjMTIvz+ToiIgonVVWVoYekPMwSvwLTrld550BuLddiyrrvfAqIwAAJSUl3GaeiGKKiREiogyhKgrml5fjvepq+HXWbHf7fLj3k09w9/HHY3hOjskREhFRuqlr6IAQwMKFC3XPGT5ExSd/q0BJgRpyXEU3nDU34uxF+1FV44fT6UBl5XYmR4goZpgYISLKIHl2O+YOHYpPamt1z2n1ePDLjz/G3ccdhxG5uSZGR0RE6aatww0pgT/eczbmz5mge16XWodiuRZChB4vH2LBphcm4d2tE3DhNS+hqamJiREiihkmRoiIMsyI3FxM9HiwvaVF95w2jwf/30cf4c5jj8XE4mIToyMionQ0fnQxZh4z0uCMkdA6FWgG/URsqhtnTN2G2ZPssQ+QiDIam68SEWWgqcXFKNI0w3O6fD7c88knWL1vn0lRERFRJhM5syCc+lUlAGBRvHjnseEoCLzHrXyJKGZYMUJElIGEEBgdCKBy82aUzZype55P0/Dwxo3Y0dqKy6dMgU0Nvf6biIgoWkIIKIWnQgu4ID36Sfksu4Jy/5/h3fE1rGN+DsU+3MQooyc1D6S3AdJbB+mpBfztgPRDSj+AAAABYSmAsBZDZI2CyKqAUFglQxRPTIwQEWUoBcAnv/kNbnz9dez1eAzPXVlVhS+amnDtjBmYWFRkToBERJRxhFChFC9AoOk1wKvfDwsAtNb34Gn/GGrp92EZdmVCEyRSSkD6AX8bpK8F0t8M6W08mPzw1kN66iC9tZDeOsDXNMjZFQjn0VByZ0HNPx5KwfEQanZc/hxEmYqJESKiDBbwevH94mKs9Hqxpcn4Qa2mqws//+gjLBg7Fv81cSLsFt5CiIgo9oRihVpyNgJNbwDeGuOTtR4E6pYhULcMSu4cKAUnQsmdCSVrNGArgxDfdA44mLzwAv5OyEAH4O+ADHRC+jsAfztkoPPQsY6D5/g7AM0FqfkOvk/6AekDNB+k9B3850OvIX0A4rW0R4N0bUfAtR2B+n8Awgql4BRYSs+HUnAyhGKL03WJMgefajNUZWUlli1bho8++gg7d+5Ea2srVFVFWVkZjjnmGHznO9/BxRdfjPz8/ESHSkRxtmvHDpw5cSL8Dge2ud2G50oAb+zejTV79+KU/HxMdjggDm0hUFJSwh0CiJII7/WUyoRihzrkXGjNKyF7dof1Hq1zHbTOdcEHlWxAANC8h5IXaUD6oLW+A2/rO/ChCC3qd9GmngpNOEOezvsz0cCYGMkw9fX1uP766/HSSy+FHK+qqkJVVRVWrFiBO+64A7/4xS9wyy23QFHYp5co3bQ1NgIAFi5cePCAEJh66aWYcMEFA763PRDAay0t+OuuXfjib39D45YtcDid2F5ZmZQPX9XV1WgaoCImXHzApGTHez2lCyEsUIq/A63jE8jODZFNonXHNqgkY0ULygLPIqv9b/jLqx340wttqGsOBJ3jdDpQWbmd9y4iA0yMZJAtW7bgjDPOQH19fVjnd3Z24rbbbsMHH3yAl156CQ6HI84REpGZujs7AQAL77oLU2bN6j3e4vejSlWhHaoEMVI4fjxO+tWvYOvuxvu//z0aGxuT7sGruroaEydNgtvlisl8yZwAIuK9ntKNEArU/OOh2YZBa30X0HoSHVJSys9R8dOFhbj5khI09YxDY89R0GBF5a56XHHjM2hqauJ9i8gAEyMZYvfu3fj2t7+NlpaWfmNTp05FRUUF2tvbsXXrVrS1tQWN//Of/8T3v/99vP76670l80SUPkorKjBmypTe12MAHOXx4LO6OrQO0JT1MG92Nk64+2481dAA94EDmFdeDkuSfPvc1NQEt8uF63/3OwwfOzaquQ7s3o1Hb7+dD5iUlHivp3SmOMZA2BaisepfKLJXJzqcpKWIAEodX6E0uxpK7rEQGJLokIhSQnI8tVJc+f1+XHjhhf0elM477zzs3LkTX3zxBd5880189NFHqK2txV/+8pd+643feOMNPPTQQ2aGTUQJlGe34z8qKnBMSQmUQXxIqvf58Mf167HonXfwwvbtaB6gZ4mZho0di5KjjoIyciTahwzB/oIC7MjOxhdZWdhgs2GDzYbNdjsqnU7szctDc0kJ5PDhKBw/HqMnT8aYKVOiTqwQxQvv9ZQJhOrAAdcsnHzVPnQqswZ+Q9JSATUfwj4cwjkBImcWRO5cKHnfgpI3D1sPjMDSl9rQ1F0IqHmRXULrgda+GkfnvYuLTs8BpBbbPwJRmmHFSAZ4/PHHsXHjxqBjN998Mx588MF+52ZlZeFHP/oRTjnlFJx44omorf1mm7Rf/epX+OEPf8gmbUQZQhECE4uKMCw7G5/X16OlJ/zy5VaPBy9+9RWWf/UVZg0dipNHjMCssjLYVTWOEffn8fux0+3GzEWLsMViga+qyvB8TUr4NA3dPh8a3W7sOXTcrqoYmp0NmxAQSVIJQ3Qk3uspk3y+zYP91jswY2IOAg3L4W9+E/CGt3wsPhT4A0Bntw8OhxNZznwI1QEoDkB1Qqi5gJrT+79Qsgwrs7bVCNzy4Ic4evpZOGPCTMiAC9KzH7KnCtK9e1BNZG2qC3+7ZyjcvrsQaPsl1ILjY/EHJko7TIykOY/Hg1/96ldBx0466SQsWbLE8H3jxo3DG2+8gXnz5sHnO/jLt6WlBUuWLMG9994bt3iJKPnk2e34j5EjUdXRga3NzXD7/WG/VwOwrq4O6+rq4LBY8K3ychw3bBimlJTELUnS4HJhfX091tfXY2tTE3yahrFnnolo9iLwBALY29EBWCz47tNP419tbchrbcW4ggIuO6CE472eMpXiPBrK6J/BMuoOSNd2aJ0boHVtgezZC63nABDoALRDlYvCCggboNgg1GzAkocul8C7H3yKE+dPRnFxEYRiBxQ7IA7+r1BsB98j1IM/UA79swLg8P8qEELgxVfW4fIbn8Ebf7sCZ3x7Zkz/nEJ1QjiPBpxHQ2o+SPcuaF2bAF/4TcUdcg+8lVdAyT8B1lG3QcmeHNMYiVIdEyNpbvny5Wg8tPPEYffff39YD/KzZs3CNddcg0ceeaT32BNPPIG7776bneuJMowQAmPy8zEyNxc729qwvaUFfm1wZbluvx8f7tuHD/ftg01VMbWkBLNKSzGluBjDcnOhRphgcPl82NbcjC2NjdjS1IT9h5rKxktWQQHWdXVh3Zo1GJWXh9NGjcJJI0Yg22qN63WJ9PBeT5lOCAUie3LID/tS+nEwedH/7/O2DRvwX3fNxqdvLkTpuJEmRBo9oVghsidBOCdCevZBdm6A9OwL+/1a+0fwbPkIStH/g3XEIijZUwZ+E1EGYGIkzT3//PNBr6dOnYr58+eH/f5rr7026GGpoaEBq1evximnnBKrEIkohVgUBZOKijA2Px9ftbRgV3v7oBMkAOANBLChvh4bDu2c4bBYMK6gAOPy81HqdKLE6USJw4E8mw02VYU8tMSl0+tFk9uNfZ2d2NfZieqODlR1dECTMtZ/1LDs7ejA/37xBZ7Ztg3HDxuG00aNwtGFhawiIVPxXk+ZqLKyMinmSBQhBERWBZBVAempRaD9Y8BbO/AbD9FaVsLTshJKwcmwDF8EJXcW710UlerqajQ1hV/FZKSkpMT0JvdMjKQxn8+HDz74IOjY2WefPag5Jk6ciPHjx2PXrl29x5YvX86HJaIMZ1dVHDNkCCYWFWF3ezsqGxvhi+KByu3348umJnwZoxuq2byBAD7Ytw8f7NuHitxcnDZqFE4cMQK5NluiQzNFQEp0eDxo7ulBi9uN1p4etBz6ae3pQWt3N7q8Xng0Dd4+SSwBwK4oyFIUZAmBLEVBnsWCfFVFnqoi32JBkcWCrEPVC4l4WEpmvNdTpqlr6IAQwMKFC2M2Z2dXV8zmSgRhL4c65ALInj3Q2v8N+FvDfq/WtgretlUQzgmwlP4n1CHnQFjYY4gGp7q6GpMmTYTLNXDT/ZICBeNG2DB+pBUjyiwoyFVQkKOiIFdBjlOBRQXa7SoKZs6AzaZCyZkK29hfDThvtJgYSWObNm1CV59f9CeccMKg5znuuOOCHpY+/PDDaEMjojRhVVVMKCqCpbYWT/zpTzjv9ttxwOtNdFgJVd3Ziae+/BJ/27oVU0tK8K3ychw7dCgKsrISHVoQKSW8mgZvIABvIADf4X/WNPh0jnX7fGj3etHu8aDD4+n95zaPJ6qqHU8ggI5AwPAcd0sLug4cgLu+HjdcdhmmjByJ4Tk5KHU6M/pbTt7rKdO0dbghJfDHe87G/DkToprrrQ+24e4H/omeQTQXT1ZCCAjHWIis0ZCuSmjtnwJad9jvl64d8FXdC9/e30ItOhVK4X9ALTgJwloYx6gpXTQ1NcHlcuOvD12KSePLoAovbEoX7Gp38P8qXVCVMHvV+SohfYBUs+Mb/CFMjKSxrVu39js2ffr0Qc9zzDHHBL3etm0b3G43HA5HxLERUXpRAFR/8AGO/dGPUDRuHDZ0d2Ory9WvOiAZFGdlYYjTiUK7Hbk2G5wWCyzKweZ5AU2D2+9Hp8+H1p4eNLhcaHK7EcmfIiAlNjc2YnNjI57csgWj8vIwsagIE4uLcXRhIUocjkFthWxESokunw9tHg/aenrQ7vGg9VDC4nDiwuXzwe33B/0kaglSJBxFRXAUFQHHHIPXamrwWk0N8mw2PHXmmYkOLaF4r6dMNX50MWYeE11fkO27ErmTTXwc7LcyBcJxNGTXZvjaP4cqwm+aDulBoPmfCDT/Ez4oUHJnQcmbAyVnGpScaRC2svgFTylDSgn4WyA9B6D17EWJ/xP85RelOGvmdjhtGwEthslGOYi/v1FgYiSN9V036XQ6MXz48EHPM378+KDXmqZhz549mDyZ3ayJ6KC2Q40fjyxtVmw2lM+Zg5Enn4yhs2dDTVBz0iwh8NWHH+Lk44/HMRMmGO6GoyoKcmw25NhsKM/OxuTiYvgCARzo6sLezk40dHcDESQzJICqQ/1Q3j60ZbBNUTA0OxtDs7NR7HAgx2pFttWKHKsV6qFlIwIHd/bx+P3oCQTQ4/cfrNrweNBxuHLD60WHxwN/CiU5YmVYTk6iQ0g43uuJKBShWCHy5mBHdSHeffsfuP4HJVAw2A+YGrTOddA6131zyDoEStYoiKyREFkVELZyCGsRhKUIsBZBqDkHtylW7BldzZdKpJSA9B5MZmg9kAE34G+F9LdB+tsAXxukvxXS2wjprYH01EB6agHp6Z1jCICLz8wD0HrwwSWm8TExQlGqqakJeh3JgxIAlJeX9zu2d+9ePiwRUa/uQzvBLLzrLkyZNavfuB9Am9+PdkVBhxAIxPlhqSI3F7PLyjCrrAzdVVWY++CD+N5xx0W0RbBVVTE6Px+j8/OxY+tW/P2553DSD3+I1gGWfgzEq2mo7uxEdZx30Ulnw5kY4b2eiAwFpA13PtyE7172DCYUfoxAw3JARrGBva8Rmq8RODJZEpI4mCBRHRBKFvS2Oj58TEA99MVDuM8H8XiOGOycMsQ/H/pfKSH7HoM84i0hxo54r+78MsT5/a6tM/8R75XSC2ieQ8kQT59rJRkZ3fNWuISUGfgVU4Y4/fTT8e677/a+PuGEE7BmzZpBz7N7926MGzcu6NiyZctw6aWXDvheo0yxLcKmhFJK+Hw+qBZL1JloTdOgBQJpPVcyx5YJcyVzbImeq/eWHqPbkBACoR6ppJTw+/0x+XNKKRHw+2GxWAAhDv4ZeBtNGEWIQS9H8hr0wEnF/y/T/V5vtagIscvqoGgBCX9Ag8WiQFGi/F0Xw7mSObZknSuZY0vWuaQG+PwBWK3WI/5bDRwcSOYPw0S9FEAMvp5jsPd7VoyksZaWlqDXeXl5Ec2Tm5vb71hra/jdrvUY/WUNR8Afu7KqTJgr1vNxrsTOlwlzxVosY/Mn8Z8zk8S4Wjclpfu93ueP3TeFfn/s/sbEcq5Yz5cJc8V6vkyYy+eLokqEKKE0APFv7M/ESBrzeDxBr51OZ0TzhHrfQN27PR5Pv+sTERFRbPFeT0REFL0oixMpmfV9WLFYIsuDqSHW5A+Udb7vvvuQn8890ImIiOKJ93oiIqLoMTGSxgJ9GgOGeugJR6j3aZpxad/PfvYztLe3R3Q9IiIiCg/v9URERNHjUpo0Zu2zNWaka+JDfWNkt9sN32O32wc8h4iIiKLDez0REVH0mBhJY30fViJtgBbJw1I4wu1U7/V6I+5qT0Tm4X+rlAqibQaabFLxXs/fFURE5sjk37eDvR8yMZLG+q777erqimiezs7Ofseys7PDem+0Wx92dHQgPz8fjY2NEXfaJ6L443+rRImRavd6/q4gIjIHf98ODnuMpLHi4uKg121tbRHNE+p9ZWVlEc01WHa7Hb/85S9ZqkuU5PjfKlFipNq9nr8riIjMwd+3g8OKkTQ2bNiwoNf19fURzRPqfWYmRu6++25TrkVEkeN/q0SJkWr3ev6uICIyB3/fDg4rRtLYuHHjgl7X1NRE1JRt7969/Y6NHTs24riIiIgoNnivJyIiih4TI2lsypQpQa/9fj9279496Hl27NgR9Lq0tBQlJSVRxUZERETR472eiOj/b+++w6K42r+Bf+lNBBHFgkHFDogCFmxgYgNL7D0iBk0ejYkmT0zUaGIJGI0afRLFChoLtth71wg2FAwlKooCFlCK9H7eP3zhx+xsmVl2lwXuz3XtdTmHOefcs+DM7j3nnCGk8igxUoO5ubnxyu7evSu6Hck6Li4uSsdECCGEENWhaz0hhBBSeZQYqcGsra3h6OjIKbt48aKoNnJzcxEaGsop69evX6VjI4TUXP7+/tDR0YGOjg6mTp1a1eEQUqPRtZ4QQgipPFp8tYYbPHgwoqKiyrePHDmCP/74A8bGxoLqHz58GPn5+Zwyb29vlcZYUWxsLHbu3Im///4bjx8/Rnp6OvT09GBjYwMnJyd4eXlh4sSJvMcTEkK0w8OHD+Hv71/VYRBSq6jjWh8QEIAFCxZo1TW4pKQEx48fx7Fjx3Dr1i28evUKmZmZMDMzQ/PmzdGtWzeMGjUKAwYMgI6OTpXESAghQmjjd543b97gP//5T6XbcXNzw/fff6+CiDSMkRotOjqaAeC81qxZI6huUVERc3Bw4NTt2bOnWuJ8/fo1Gz16NC9WaS9zc3O2atUqVlJSopZYCCHKyczMZE5OTpz/rz4+PlUdFiE1XmWv9W3bthV0/a3Ka/C5c+dYy5YtBcXo7OzMwsLCNBofIYQIoc3feU6dOiX4WiDvNXjwYI3Eq2o0laaG69ChA2847IIFCxAWFqaw7uzZsxEdHc0p+/rrr1UaHwA8ePAAzs7OOHjwoKD9s7Ky8O2332Lo0KHIy8tTeTyEEPHy8/MxYsQI/PPPP1UdCiG1TmWu9RMnTuQtvCpPVVyDV6xYgQEDBgheVDYyMhJ9+vTBtm3b1BwZIYQIp+3fee7fv6/2PrQZJUZqgYCAAOjq/t+vOj8/H0OGDMGZM2ek7l9YWIjZs2cjMDCQU96jRw+MHDlSpbE9ffoUffv2RXJyMu9njo6O8Pb2Rs+ePWFpacn7+alTpzB27FgwxlQaEyFEnOzsbAwePFj0ugaEENVR5lo/ZcoUHDhwQOrPteUa/Ntvv2H+/Pm8cjMzM7i7u2Pw4MFwdnbmHDsAFBUVYfr06di/f79a4yOEECGqw3eeiIgItbav9ap4xArRkO+//543zElHR4cNHTqU7dmzh926dYtdunSJrVq1irVq1Yq3b926ddnjx49VGlNRURHr3Lkzr6/hw4fz+srLy2Nbt25lFhYWvP3Xrl2r0rgIIcJFRUWxdu3ayRxOSVNpCNGcyl7rAbB+/fppzTU4LCyM6evrc/ozMTFha9asYdnZ2Zx9nz17xqZNmyZ1KPrz58/VFiMhhChSXb7ztG7dmtPfrl271NqftqHESC1RUlLCpk6dqtQ8MWNjY3bmzBmVx7R+/XpeX3PnzpVbJy4ujjVu3JhTx8rKimVkZKg8PkKIfDt27GCmpqZyzx+UGCFEcypzrQfARowYIbd9TV6DS0tLmZubGy8pomjtkD/++IN3XNOmTVN5fIQQIlR1+M6TlZXFdHR0OP1FR0erpS9tRVNpagldXV1s27YN3333HfT1hT+MyNbWFmfPnsXAgQNVGk9BQQGWLVvGKevTpw9Wr14tt569vT1OnDgBAwOD8rK0tDSF9QghqvPw4UMMHz4cPj4+yM3NrepwCCH/n7LXegDo2LEjDh06JHcfTV6Djxw5grt373LKfv/9d3Tv3l1uvZkzZ/LWQ9uxYwcePXqk8hgJIUSR6vKdJzIykjNVx8TEBG3btlVLX9qKEiO1iK6uLlasWIF79+5h9OjRMDU1lbmvjY0NFi1ahKioKPTp00flsRw6dAhv3rzhlK1YsULQ4/VcXFzw+eefc8o2bdqE0tJSlcZICOFKSUnBrFmz4OjoiKNHj/J+Pnv2bPTq1asKIiOElBFzra8oMDBQq67BGzdu5Gy3a9cOvr6+guouX74cNjY25dslJSXYvHmzSuMjhBAhqst3HsmFVzt27Ag9PT2V96PNKDFSCzk5OeHAgQN4+/Ytzp07h+3btyMgIACrVq1CUFAQIiIi8PLlSyxdulRtz84OCQnhbDs6OsLd3V1w/ZkzZ3K2U1JScO3aNZXERgiRzt/fHxs2bEBxcTGn3NzcHNu3b8f69etr3UWUEG0l71rfqVMnzr7adg1++/YtLly4wCnz8/MT9EUCeH+nc+rUqZwyRaNhCCFEHarLdx7JhVc7d+6s8j60nbhxlqRGMTExQf/+/TXeb1FRES5fvswpGzp0qKg22rVrh1atWiEuLq687NChQ/D09FRFiIQQgby9vREYGIhmzZpVdSiEECkkr/VFRUVYsmQJZx9tuwafP3+e9/QFsTEOHToUv/zyS/n2s2fPEB4eDldXV5XESAghilSn7zySI0ZqY2KERowQjYuIiEB2djanTJnh9z169OBsX7lypTJhEUJEcHR0xPHjx3Hy5ElKihBSjVSHa/Dff//N2W7QoAHatGkjqg03NzcYGhpyyuhzAiFEk6rD+RYAiouLER0dzSmjxAghGiD5Hw8AnJ2dRbfj5OTE2Y6JiUFeXp7ScRFCFHNzc8OuXbsQGRmJIUOGVHU4hBCRqsM1WDJGZeIzMjJC69atOWXh4eGViosQQsSoDufbsvYKCgrKt/X19Xl91gaUGCEaFxsby9k2NTVF06ZNRbfTqlUrznZpaSni4+MrFRshRLbFixfjzp07mDRpEnR16fJBSHVUHa7BkjGKHS1SRjLGikPRCSFE3arD+Rbgry/Srl07GBsbo7CwEPv27cPUqVPRvn17WFpawtjYGB988AF69eqFJUuWIDIyUmVxVDX6ZEs07uXLl5xtZU4QANC4cWNe2fPnz5VqixCimJWVVVWHQAipJG2/BhcXF/Oe4KCqGOkzAiFEk7T9fFtGMjHi6OiIdevWwdbWFuPHj8eOHTvw77//4t27dygoKEBiYiJu3LiBn376CZ06dcKoUaNqROKZEiNE416/fs3ZrvhIPTEaNGjAK3v79q1SbRFCCCG1gbZfg5OTk3kLr6oqxtTUVF7bhBCiLtp+vi0jufDqgQMHMGfOHF6SWpa//voLLi4uOHXqlMpiqgqUGCEal5aWxtmuW7euUu2Ym5vzytLT05VqixBCCKkNtP0aLBkfoLoYS0pKkJWVpVRbhBAilrafb8tITocpKSnhbLdo0QKenp7w9vaGq6srDAwMeG1kZWVh6NCh2Ldvn8ri0jRKjBCNq7i4D/B+vp0ypNXLz89Xqi1CCCGkNtD2a7BkfLL6EoI+JxBCqpK2n2+B948yl5Zk0dPTw+zZsxEbG4unT5/i8uXLOHnyJO7evYvU1FRs2bIFtra2nDqlpaWYNm1atV13hBIjROMkTxL6+vpKtaOnp8crKyoqUqotQgghpDbQ9muwtMSItsVICCFCaPv5FuCvLwIAjRo1wuXLl7F+/Xq0a9eO93Nzc3P4+fkhMjISHh4enJ/l5uZi2rRpKolN0ygxQjROcniWtP/sQkirV1paqlRbhBBCSG2g7ddgyfhk9SUEfU4ghFQlbT/fAu8XvHZzcytfYN/ExAQnTpxA7969Fda1srLCiRMn0LZtW075vXv3cPjwYZXEp0mUGCEaJzkvrbi4WKl2pGVKjYyMlGqLEEIIqQ20/Rosbe66tsVICCFCaPv5FgBGjx6NO3fuIDU1FRkZGXj48CFcXV0F169Tpw4CAwN55du2bVNJfJpEiRGicZL/kQsLC5Vqhz7wEEIIIeJo+zVYWhvaFiMhhAih7edbSRYWFmjWrJnoep6enujUqROn7MqVK0ofb1WhxAjROAsLC852dna2Uu1IW1nezMxMqbYIIYSQ2kDbr8GS8QGqjVHZxQ8JIUQsbT/fqtKAAQM42zk5OYiJiamiaJRDiRGicfXr1+dsZ2RkKNWOtHrKPh+cEEIIqQ20/RosGZ+svoSQrGdlZSV1qg4hhKiDtp9vValjx468suTk5CqIRHmUGCEa16RJE862sv9ppNXTtpMEIYQQok20/RpsaWnJuxOqqhjpMwIhRJO0/XyrStKS2qmpqVUQifIoMUI0zt7enrP98uVLpRYjev78Oa+sZcuWSsdFCCGE1HTV4RrcokULznZCQoJS7UjGSJ8RCCGaVB3Ot6oi7Yli2jbdRxFKjBCNc3Bw4GwXFxfj6dOnott5+PAhZ7thw4awtrauVGyEEEJITVYdrsGSMUr2JZRkPcl2CSFEnarD+bYixpjUBIcQ0kaHVLfvZZQYIRrn5ubGK7t7967odiTruLi4KB0TIYQQUhtUh2twly5dONsRERGi77ImJiYiJSWFU0afEwghmqTt59uoqCh89NFHcHJyQqNGjWBgYIBNmzYp1daDBw94ZW3atKlsiBpFiRGicdbW1nB0dOSUXbx4UVQbubm5CA0N5ZT169ev0rERQgghNVl1uAZ7enpytvPy8hAWFiaqjfPnz3O2dXR08OGHH1Y2NEIIEUzbz7eWlpa4dOkSoqKikJycjJKSEl5fQl26dImz3a5dOzRo0EAVYWoMJUZIlRg8eDBn+8iRI8jPzxdc//Dhw7z9vb29VRIbIYQQUpNp+zXYxcUFjRs35pSFhISIamPv3r2c7a5du1a7D+mEkOpPm8+3tra2vEVcjx07htzcXFHt3LhxA/fv3+eUDR06tNLxaRolRkiVmDJlCmc7LS0NGzduFFS3uLgYAQEBnLKePXuiffv2KouPEEIIqam0/Rqso6ODyZMnc8qCg4ORlJQkqH5YWBguXLjAKfPz81NZfIQQIpS2n2/Hjh3L2c7KysL69esF1y8uLsY333zDKdPT08OsWbNUEp8mUWKEVIkOHTrwhoEtWLBA0FDZ2bNnIzo6mlP29ddfqzQ+QgghpKaqDtfgmTNnwsDAoHw7NzcXY8aMUXinNTk5GRMnTuSU2djYYMKECSqPkRBCFNH2862fnx90dbkpgeXLlyM8PFxhXcYYZs+ejVu3bnHKfXx8YGdnp9I4NYESI6TKBAQEcP4j5ufnY8iQIThz5ozU/QsLCzF79mwEBgZyynv06IGRI0eqNVZCCCGkJtHkNdjT0xM6Ojqc15UrV+TWad68OT7//HNO2c2bN+Ht7Y3k5GSpdR4+fIh+/frh2bNnnPJly5ZVu8dGEkJqDm0+33bs2BGffvoppywnJwcDBw7E2bNnZdZ7+/Ytxo8fz4uxSZMmWL16tdwYtZUOY4xVdRCk9po/fz5WrFjBKdPR0cGQIUMwYcIE2NvbIycnB+Hh4di0aRPi4uI4+9atWxfh4eFo1aqVJsMmhMjg6emJq1evlm/7+PggODi46gIihMikqWuw5HkBAC5fvsxbZFVSdnY2OnfuzOvXysoK06ZNw4cffoiGDRvi5cuXOHHiBHbt2sWbG+/t7Y0TJ05AR0dHbl+EEKJO2ny+zcjIQI8ePRAbG8v7Wb9+/TBu3Dh06NABhoaGePHiBc6fP489e/YgPT2ds6+hoSHOnz+PPn36yI1RW1FihFSp0tJSfPrpp0p9cTI2NsaRI0cwcOBA1QdGCFEKJUYIqT40dQ1WNjECAM+ePYOnpyeeP38uOkYXFxdcuHAB9erVE12XEEJUSdvPt0lJSfDw8MDTp09FxwcAJiYm2L9/P4YMGaJUfW1AU2lIldLV1cW2bdvw3XffQV9fX3A9W1tbnD17lpIihBBCiJKqwzW4efPmuHLlCtzd3UXVGzZsGC5dukRJEUKIVtD2862trS3Cw8MxatQo0XUdHBwQGhparZMiACVGiBbQ1dXFihUrcO/ePYwePRqmpqYy97WxscGiRYsQFRVVbYdpEVKTXblyBYyx8heNFiFEu1WHa3Dz5s1x48YNbN++Ha6urnL3dXd3x4EDB3D06FFYWFhoKEJCCFFM28+3lpaWOHjwIK5fv47hw4fD2NhY7v5ubm7Yvn07IiMj0alTJ43EqE40lYZonby8PPz9999ISkpCcnIy9PX1YW1tjc6dO8PJyYm3cjIhhBBCVKM6XIMTEhJw9+5dvH79Gunp6TA3N4etrS3c3d3RuHHjqg6PEEIE0fbzbUFBAW7fvo0nT54gNTUVeXl5qFu3Llq0aIGuXbvCxsamSuNTNUqMEEIIIYQQQgghpNaq+rQ/IYQQQgghhBBCSBWhxAghhBBCCCGEEEJqLUqMEEIIIYQQQgghpNaixAghhBBCCCGEEEJqLUqMEEIIIYQQQgghpNaixAghhBBCCCGEEEJqLUqMEEIIIYQQQgghpNaixAghhBBCCCGEEEJqLUqMEEIIIYQQQgghpNaixAghhBBCCCGEEEJqLUqMEEIIIYQQQgghpNbSr+oACCG1V0JCAqKjo/Hs2TNkZmaiqKgIpqamqFevHlq0aAEnJyfUr1+/qsMkhBBCCCGE1GCUGCGEaFRkZCSCgoJw+PBhJCQkKNy/ffv2GDlyJHx8fNC6dWsNREiUsXDhQvj7+3PKLCws8OLFC5iZmVW6/alTp2LHjh2VbkeRy5cvw9PTU+39EEKIsjZu3Ijk5GQAQNu2bTFhwoQqjogQQqo/mkpDCNGIhIQEDB8+HJ06dcK6desEJUUAIDY2Fj///DPatWuHCRMm4OXLl2qOlIhVWlqKnTt38srfvXuHvXv3VkFEhJDq7tmzZ9DR0RH10tXVhZGREerWrQtbW1u4urpi1KhRWLZsGcLCwlBaWlrVh1Vp2dnZ+Oqrr7BkyRIsWbIEcXFxVR1SrZKbm6twn6lTp3L+LtWdbJf8fxAcHKzW/jShJh5TdSXkb/6nn37i/L6aN2+u/sDUgBIjhBC1u3DhApycnHD06FGl2ygtLUVISAgcHBxw4cIFFUZHKuvs2bNISkqS+rPAwEANR0MIqa0YYygsLERWVhZevHiBe/fu4a+//sLixYvRo0cP2NvbY+3atSgsLKzqUJV26dIlFBUVlW8PHDiwCqOpPXJzc7FgwQLMmTOnqkMhRGN27NhRq0bRUmKEEKJWYWFhGDJkCDIzMznl5ubmmDRpEtatW4czZ84gLCwMERERuH79Og4dOoRFixahS5cuvPYyMjIwePBgXLx4UVOHQBTYvn07Z1tf//9maYaHh+Pu3buaDokQQniePXuGr7/+Go6OjggPD6/qcJRy9uzZ8n9bWVnBzc2tCqOpHU6cOAEHBwcEBARU66QaIULFxMTAw8MDU6dORUpKSlWHozG0xgghRG1yc3Mxbtw4FBQUlJfp6upi3rx5+OGHH+SuPTFy5EgsXboUt2/fxowZMxAZGVn+s8LCQowbNw4xMTFo2LChWo+ByJeWloZjx46Vb9evXx99+/bFwYMHy8sCAwOxdetWlfcdHx9fbYdrEkKqzuPHj9GzZ08cOHAAQ4cOrepwRDl37lz5v/v16wddXbrHqU5fffUV1q9fX9VhEKIx+/btwyeffMIZmVZb0NmUEKI269atQ2JiIqds69atCAgIELwgZ9euXREWFoY+ffpwylNTU/Hjjz+qLFainF27dnHuoPXq1QsjRozg7LN37168e/dO06ERQmoYHx8fMMZkvkpKSpCbm4s3b94gJiYGR48excKFC6Uu3F1QUIBRo0ZxRmBou6dPn3LWFKFpNOpX8aYMIbVBbGxsrUyKAJQYIYSo0ebNmznbI0aMgK+vr+h2TExMsH//flhYWHDKd+7cyZuiQzQrKCiIs927d28MHToUxsbG5WW5ubn4888/NR0aIaSW0dXVhYmJCaytrdG+fXsMGzYMy5cvR2xsLLZs2cJLyBcVFWHChAmIj4+voojFkUziDBgwoIoiIfIEBwdzEnZXrlyp6pAIIQJQYoQQohaPHj3Cs2fPOGXKJEXK2NjY4Msvv+SU5ebm4tKlS0q3SSrn3r17iIiI4JQNGDAA5ubm8Pb25pRv2rRJg5ERQsj/0dPTg5+fH0JDQ1G/fn3Oz9LT0/HZZ59VUWTiVEyMdOjQAba2tlUYDSGE1CyUGCGEqEVsbCyvzN7evlJtjh8/nlcm+cWcaI7koqutW7eGk5MTAGDSpEmcn0VFReHvv//WWGyEECKpY8eOOHHiBAwMDDjl58+fx/Hjx6soKmGKi4s5NwJoGg0hhKgWLb5KCFGL7OxsXllqamql2mzfvj3q1KlT3ra5uTlKSkoq1aamJSQk4ObNm0hISEBBQQEsLCzQtm1b9OzZE6ampnLr5ufn48aNG4iJiUFmZibMzc3RtGlT9OzZE40aNdLQEbxXUFCAvXv3cspGjRpV/u/BgwfDysoKaWlp5WWBgYHo1auXxmIkhBBJ3bt3x6JFi7B48WJO+apVq7R6IdbQ0FBkZWWVb9M0GkIIUS1KjBBC1EJyPRAA+Ouvv9C7d2+l29TR0cG9e/dgZmYGa2trGBoayt0/ODiYN32HMSaqT09PT1y9erV828fHB8HBwVL3/emnn7BkyZLy7Y0bN+Lzzz8HAFy8eBGLFy9GaGio1Lqmpqb49NNPsWzZMt579/btWyxduhTbt29HTk6O1Pr9+/eHv7+/xh7deOTIEU7SAwDGjBlT/m8jIyOMHz8eGzZsKC87ePAgfvvtN1hbW2skRkIIkWbevHnYsGEDXr9+XV52/fp1REdHw8HBQXR7r169wv3795GamorU1FRkZ2fD0NAQVlZWsLOzQ+fOnSt93qv4NBpjY2N4eHgo1U5mZiauX7+Ox48fIycnB+bm5rCzs0PXrl3RuHHjSsUo6dGjR/jnn3+QkpKC9PR0WFlZwcbGBq6urvjggw9U2leZx48f49atW3jx4gVKS0thZWUFR0dHuLq6cta+0nYFBQUIDw/HP//8g7S0NJibm6NZs2bo1q2b2m6E5ObmIiwsDC9evEBycjJ0dXXRsGFD2NnZoXv37go/c2mjd+/eISwsDK9evUJKSgqMjIzQsGFD2Nvbo0uXLmp5qhNjDBEREXjw4AGSk5PBGEOjRo3QsmVLuLu7Q19fNV+/4+LiEB4ejpcvX6KgoACNGjVCixYt0LNnT5X1oUp5eXn4+++/kZiYiOTkZBgYGKBp06bo3Lkz2rVrV9XhvccIIUQNnj9/zgBwXoaGhuzSpUsaiyEoKIgXg1geHh6c+j4+PjL3/fHHHzn7bty4kRUUFLC5c+cyHR0dXizSXi1btmTPnj0rb/PixYvM2tpaUF1DQ0O2c+dOZd4q0QYMGMDp29HRkbfPnTt3eDGuXLlSqf58fHx4bcXHx1fyKAgh2io+Pp73f17e+Vcsf39/XvvLli0TXD8iIoLNnDmTtW7dWuG5WUdHh3Xp0oVt3bqVFRUVKRWvm5tbeXv9+/eXuV/FfvX09MrL37x5w2bMmMGMjIxkxujp6clOnjypVHxl0tPT2cKFC1mrVq3kvieOjo7s119/Zfn5+YLblrymf/rpp+U/u3r1KuvWrZvM/szNzdmMGTNYQkKCwn6EXG/lfa6QvF55eHgIPsYXL16wmTNnMktLS6l96evrs6FDh7L79+/LjDcoKEhwf4wxdv78eebl5cWMjY3lvn9jxozh9KtOlT2m/fv3M09PT6avry/zmOrXr898fX3ZkydPlI7NwsKivDwnJ4ctX76cNWnSRGaf9erVY9OnT2cvXrwQ1WeZoqIitmHDBubg4CCzjwYNGrBvvvmGZWZmMsbe/99X9Dcr+VlX0evy5cuc+pKff+3s7Mp/9u+//7KxY8cyU1NTme21bt2a/f7770qfH1WFEiOEELXp1KkT7+RnZGTE5s+fz16/fq32/qs6MbJhwwY2btw40R+ynJ2dWWFhITt16hQzNDQUVdfAwIDdvn27Eu+aYgkJCUxXV5fT76+//ip1X0dHR85+rVq1YqWlpaL7pMQIIbWLuhMjMTExvPZ79OihsF56ejqbOHGi6PN62cvR0ZE9evRIVKxv3rzhnHNXrVolc9+KfZUlRsLDw1njxo0FxzhixAj27t07UTEyxtjmzZuZlZWVqPfDzs6OnTt3TlD7shIjP//8s+CbDyYmJiwwMFBuP2J/p5KUTYxs2bJF7pfHii9DQ8PyvwPJnwlNIiQlJbFBgwaJOlZdXV3m6+vLcnJyBPWhLGWPKTo6Wm6CTNZ7OW/ePFZcXCw6trLESEREBGvZsqXgPs3MzNiePXtEvSexsbG8z1TyXs2aNWPXrl2r0sTITz/9xAwMDAS36+LiwhITE0W9L6pEiRFCiNrs2bNH5snPwMCADR48mG3dupUlJSWppf+qToy0adOGs21vb89WrlzJTp8+zcLDw9nRo0fZlClTeEkGAOzbb79lderUKd+2sbFhCxYsYKdPn2Z3795lp06dYnPnzuXsU/bq169fJd41xZYtW8bpT19fX2aia/Xq1bz4hH4IrogSI4TULupOjDDGWLNmzTjtGxsbs8LCQpn7Jycns7Zt24r6AiHrC4uYxIPktfTBgwcy9624n56eHouJiWH16tUTHaOjoyNLTU0VFF9JSQmbO3eu0u+Hvr4+27x5s8J+pCVGAgIClOpzwYIFgt5DIS9JyiRGFixYoNRxrFy5klcmJInw4MEDZmtrq/TvrGvXriw5OVlhP8pS5pguXbokc6SNkNfgwYNZdna2qNgsLCzYvXv3mIWFhej+9PT02LFjxwS9H7dv32Z169YV3YepqSn766+/FP7NqjoxYmtry3x9fZX6PbRt21apxKwqaN8EJEJIjTFhwgSEhITg2LFjvJ8VFRXh5MmTOHnyJACgbdu26NOnD3r37o3evXujefPmGo5W9R49elT+7+XLl2P+/Pmc+awuLi4YNmwY+vbty1sLZdWqVeX/njx5MgIDA2FmZsbZx8vLC35+fujXrx9evXpVXn7hwgU8e/ZMLe8hY4y3xoqXlxdsbGyk7j958mR89913KC4uLi8LDAxE//79VR4bIYSI4ejoiMTExPLt/Px8PHz4EI6Ojrx9GWMYN24cHj58yCmvU6cOxo0bBw8PD7Rs2RJ16tRBbm4uXr58iVu3bmH37t14+fIlp05iYiKWLFmC1atXC4qz4mN6GzduXP70L0UYYxg5ciTS09PLy5ydnTFt2jR06tQJRkZGePToEUJCQnDq1ClO3aioKIwYMQKXL19WuA7Dt99+i7Vr1/LKu3btitGjR8PV1RWWlpZIS0vDgwcPsG/fPty+fbt8v+LiYsyYMQNWVlacRbwVCQ0NRVBQUPm2np4eRo8ejVGjRqF58+bIzMzE7du3sXXrVjx9+pRT19/fHy1btsSnn37Ka7diDFevXsXbt2/Lt+3s7FS+lte2bdvg7+/PK3dycoKvry86d+6MOnXqIDExESdPnsTevXuRm5sLAPjuu+9E9/f8+XN4eHhw/i4AwMzMDJMmTUK/fv3QrFkz6OjoIDExEefOncO+ffuQmZlZvu/t27fh7e2N0NBQrVh75O7duxg0aBAKCws55fXr18cnn3wCT09PNGnSBIWFhXj+/DlOnTqFgwcPoqCgoHzfkydPYuLEiTh69KjgfgsLCzF8+HC8e/cOwPu18AYPHoyPP/4Y7dq1g5GREZ4/f44jR45g//79KCoqKq9bUlKCL774Av3795e7/s2LFy/g5eXFef+B9w8g+OSTTzBw4EA0bdoUGRkZuHfvHnbu3ImoqCgA79eNmTBhgsLj8PDwKF8HKSYmhvNkSVNTU3h5eXH2b9Cggdz2kpKSOP83ra2tMWXKFPTt2xdNmzZFbm4uYmJisGvXLly7do1T9+HDh1i2bBnnc7DGVEk6hhBSa2RnZzNPT0/RGeNmzZqxadOmsZCQEKUzx1U9YqTsFRAQoLCfPn36SK07fPhwhXV3797Nq7d7924xhynY5cuXeX0dOnRIbp1hw4Zx9tfX12cvX74U1a+0ESNeXl5s1KhRKnlNmTKlMm8LIUTFNDFi5Msvv+T1ceLECan7hoSE8PZ1dXVVeC7Lz89nX331Fa9ugwYNBA/dr7hmgaL3QNY1VVdXl/3yyy+spKREar1Tp05Jveu9du1auf0dO3aMV8fS0pIdPHhQbr19+/Yxc3NzTj0LCwu56z1Iu6aXvZo3b85u3boltV5eXp7U33WdOnUUDtsX8xmgjJgRI0lJSbyRnzo6Oszf31/m38eTJ09Y165dZb4X8kZXFBYWsu7du/PqjBgxgr1580ZmvVevXvGu5QDY7NmzFb4fyhBzTBkZGVKnsXz++ecsKytLZr3Hjx+zHj168OqtXr1aVGxlrzZt2rC7d+/KrBceHs6aNm3Kq7dr1y65/Xl5efHq9O3bV+Zo6+LiYvbrr79KHY0s5LOwvPVChNap+Jo4caLc38Pvv/8u9RwiZv0hVaHECCFE7QoLC9m3334rdxEseS9DQ0M2dOhQmR9YZdGGxEjr1q3lDs0u88cff/DqGhgYCEog5Ofn89Yi+eGHH8QcpmCffPIJpx9ra2tWUFAgt87hw4d5x7Z06VJR/UpLjKjyVXEBNUJI1dNEYkTaAqyy1p+Q/DJpaWkpagHF/v378/qS9yWqzIMHDzh1FK1LIOsct23bNoV93b59m5mYmHDqNWjQQOb0goKCAt5CkxYWFuyff/5R2FdZf2ZmZpz6EyZMkLm/rMRIs2bNOIuWy/Lf//6XV/c///mP3DrqTozMmjWLF9OaNWsU9vHu3Tvm6uoq9f2Ql0T43//+x9u/4iK28hQXF/PW19HR0WGxsbGC6osh5pi++eYbpT9j5OTk8G7emZmZsbS0NMGxlf0NCplaJO3m0rhx42Tuf+XKFd7+H374IcvLy1PYl7SbZmUveVSZGJkzZ47CuowxqdNurl+/LqiuKqn+GUWEECLBwMAAK1euRGRkJCZPngwjIyNR9QsLC3H8+HEMGTIE3bt3R3h4uJoiVb2ZM2fCwMBA4X7Ozs68Mi8vL0GPTzQyMuJNm5EcIqsKmZmZOHToEKds4sSJCofRDh48mDfscsuWLSgpKVF5jIQQIpTk9EQAyM7O5pUlJSXh5s2bnLIvvvgCTZo0EdzXtGnTpLarSMVpNDo6OkpNQ5wyZYrU/iV16dIFy5Yt45S9efMGISEhUvffu3cvb5rQpk2bpE5FktWf5BSSAwcOICEhQVB94P17EhwcDDs7O4X7BgQEoFOnTpyy4OBgZGVlCe5PlXJycnhTUz09PTF37lyFdevWrYudO3eKmsZSWlqK3377jVPm6OiIwMBAQfX19PSwefNm2NralpcxxrBmzRrBMahaVlYWtmzZwikbNGgQFi1aJKi+qakp9uzZwzkX5OTkYOPGjaLiWL16NRo2bKhwP09PT3Tv3p1TFhERIXN/yffW0tISO3fuFPTo6YkTJ8LPz0/hfupib2+PgIAAQftK+5uPjIxUdUgKUWKEEKIxHTp0wJ9//onXr19j+/btGD58uNQPpvLcunUL7u7uWLdunZqiVK0+ffoI2q9sbmdFPXr0ENyPlZUVZzsnJ0dwXaH27dtXPq+5jOTaKNIYGBhg8uTJnLLExETenHZCCNEkadefvLw8Xll+fj7mzp2Ljz/+GE5OTqhTpw4++eQTUX116NCBVyYtCSOpYmLExcVF6rVCHkNDQ1Fz9WfPns3rY8+ePVL3lfzy6OzsjHHjxomKb/r06bC0tCzfLi4uxs6dOwXX//jjj/Hhhx8K2ldfX5/3hTkvLw9HjhwR3J8qHT9+nHetnj9/vuD6HTp0wKRJkwTvf+7cOTx58oRTtnTpUujrC19y0szMDLNmzeKU7dq1i7e2h6bs3r2bt/aGtPVa5GncuDHvM8r27dsF12/YsCFGjBgheH93d3fOdkpKitT9UlNTcfr0aU7ZjBkz0LRpU8F9if39qtKcOXMEJXCA9+vpSH6Orbj+k6ZQYoQQonGWlpbw9fXF4cOHkZ6ejmvXrmHJkiXo27cvTExMFNYvKirCnDlzsHLlSg1EWznt2rUTtJ+0UTT29vaC+5G8a8QYE1xXKMkPCs7Ozry7b7JIS6CIvSMjKT4+Huz9lNBKvzIyMioVCyGk+pE2ak3aB/lWrVphzZo1OHLkCB48eICsrCy0adNGVF/m5ua8MkVfJvPy8nD9+vXy7QEDBojqE3ifOBByJ7uMoaEhxo8fzym7ceMG8vPzOWXZ2dm4e/cup0xsUgQATExM8NFHH3HKJBdjlGf69Omi+hs6dCjvC9iFCxdEtaEqFy9e5GxbW1vz3gtFxCToLl++zNk2NzeHt7e3qP4AYMiQIZztvLw83t+CpkgeU5s2bdC5c2fR7Uge05MnT3ijoWTp3r27qORDs2bNONuybmRdunSJs1gr8H70lxiNGzfmLZyqKUITlmU++OADzrZkwksTKDFCCKlSBgYG6N27NxYvXoxLly4hIyMDV65cwaJFi+Dm5gYdHR2ZdefPn48rV65oLliRzM3NYWpqqnR9CwsLwfvKe59U4d9//+UNJZ86darg+k5OTnB1deWUnT17Fs+ePVNBdIQQIp7kl31A3HlXqKdPn2Lv3r288tLSUrn1rly5wnlqxsCBA0X3rUydnj17crYLCgp4w/3DwsJ4iSXJc7xQkl9kb968qfC9Ad6PABH75cvAwABdunThlN26dUtUG6pS8ck8AODm5gY9PT1Rbbi7uwv+Uv73339zth0dHUVPbQbej1SRrHfjxg3R7aiCZL+q+huU1rYsHTt2FNVXnTp1ONsVn9pXUVhYGGfbwsJC6sgzRST/P2uCrq6u6ORx3bp1OdvSzs/qRo/rJYRoFUNDQ3h4eMDDwwNLly5FUlISgoODsW7dOs4j84D3HyrnzJkjd35mVZK8+IklZG0STdm2bRuvbO7cuYLmQstSWlqKzZs3ix72SgghqiB5TQHAmdYhVkpKCp4+fYonT54gJiYGUVFRuHPnDudx6hUpGtl37ty58n/XqVNH1PTKMso8WlbaSMDHjx9z1kaIjo7m7bNq1Sps3rxZdH+SCfKsrCy8fftW4UgXR0dHwUP1K+rUqRNnilJ8fDxKSkpEJyUqKy4ujrMtdG2WioyNjdGmTRvExMQo3Ffyd/b8+XOMHj1adJ8AeI9wjo+PV6qdysjIyMCLFy84ZXfv3lXqmKT9XxR6TJIjkBSR/GwnKwko+WhwBwcHpW6CCR3Zq0r169cXPYVH8tiEJEdVjRIjhBCtZmtrix9++AGzZ8/G9OnTceDAAc7PIyMjcePGjSrJiCsiZlE0bVZcXIxdu3appe3t27djyZIlWpUEIoTUDtKGygv9kvP06VMcPnwY4eHhiImJwZMnTwStGSJGxS/vffv2Veo8KTk8XQhp65gkJydzttPS0nj7qHJKSlpamsLEiDLHBvCPr7CwEOnp6aLXb6mMjIwM3ppdyvZva2urMDFSUlLCm5rw8uVL3oLqypL296Bu0vp8/PgxHj9+rLb2pZEc6aAqkucnsQmYMpr8uy4jZFq8NqKpNISQasHCwgIhISFS51hXvKtGVO/UqVN4/fq1WtpOTk7G4cOH1dI2IYTII+3LpJOTk9w6d+7cwUcffQR7e3v897//xd69exEZGakwKSJ2ykJiYiJiY2PLt5WZEgMo96VN2nQiyXUQ1P1FWMiT1ZSd9iTk+NRNWn/S1qERQki99PR0taw9VrF9TdOGv0EAahtpJHlOUXYUsroSN/Koe3q3utCIEUKIym3ZsgXnzp1DcnIykpOTYWhoiH/++afS7erq6mL16tW8D67ShvSqiuTCV7WR5KKrdevWVeqRkcD/PXq5osDAQIwdO1bp+AghRKyioiI8ePCAU2ZnZyd3lIK/vz9++OEHQV8wdXV10a5dO/Tu3Rv9+/dHhw4dRK0PUHG0CKBcYkRPT0+pL23S1jyQHBav7qeQVFxbRRZlR2UKOT51U+UXRyHTibTh96VqNfGYKpIcISbtiVlCVPVxVCeUGCGEqFxYWBgOHjzIKUtJSRG1Mr4sjo6OaNSoEWcEw7t37wTXLy0t5c2NlUfZC1FNkZKSwnus7vjx47Fp0yal23RwcODcqb18+TIePnyItm3bKt0mIYSIcfPmTd5d+65du8rcPyAgAAsXLpT6syZNmsDNzQ0ODg5o27Yt2rdvDwcHB87jgMWuwVAxMdKiRQu0atVKVH3g/fSJvLw80cPapV1TJUclSK7FYmhoiPz8fI3eKc7KylKqnpDjUzdpj4oW81mmIiHvg7S1c37++WcsWLBAqT61gbRj2r17NyZOnKj5YNRAcuqMsn/vVfF0l+qKptIQQlRO2rxfydXQK0PyUWeyPtBI+4Am9g6DrOfL1xY7d+7kjZqZMGFCpdqU9njByiRaCCFErJCQEF6ZrEelRkZGYvHixbzyKVOmICoqCi9evMDRo0fh7+8PHx8fdO3alffFV0ySvaSkhPMoV2Wn0QDKTTeQXE8E4F/XJb+0FRYWqm3KpSzKTqWQPD4LCwuNTzewsLDg/Y0o+3lDyOPmTU1NeSNLnj9/rlR/2kLamhvV/ZgqsrGx4Wwru8BtQkKCKsKpFSgxQghRuW7duvHK1q9fr7L2JU/y9vb2UveTtlCdmMXxsrKyBD/HvqYKCgribDdp0gR9+vSpVJuTJ0/mjdrZsWNHlTyajRBS+7x79w579uzhlBkYGGDUqFFS91+/fj1v+oW/vz927NgBBwcHQX2K+dJ7584dzvoG0tbWEioqKkp0HWlPemvXrh1nu3nz5rx97t+/L7qvylDm2AD+8Ukem6ZIPs5U2fdP6HRiOzs7lfSnLRo0aMBLLlX3Y6pIcgRbfHy8UqOKatJ7om6UGCGEqFzfvn15QxyvXr2KK1euVLrta9eu8e72eHh4SN1X2kgSMXe0rl27ptbFyrTdrVu3eIsTjhs3TtRUJGlsbW3x4YcfcsrS0tKwb9++SrVLCCFCrFq1ineXffTo0TKf3iC5QPQHH3yAefPmiepT2jpbsh5HWXEajb6+Pu98KcatW7dE15Ec4dmwYUPeVMdevXrx6kmuiyLUtWvXsG3bNly8eBFPnjwRvLbX69evRd8Nz8/PR3h4OKesssl+ZUk+fjk8PJz3pBpFnjx5gtTUVEH7Sv7OwsPDpT6yWpHi4mL89ttvOHToEMLDwwX3r2p6enqcR0gDwMWLF1FSUiK6rfT0dKxbtw5Hjx5FZGSk0tOaVEna0xZPnz4tup0zZ86oIpxagRIjhBCVMzY2xrRp03jlkyZNQlxcnNLt5ufnY+7cuZwyGxsbmcOMGzVqxCurODxZkcDAQHEB1jCSi64ClZ9GU2bKlCm8str+fhNC1C88PBwrV67klOno6OC7776Tun9mZibv6RRdunQRvaiptKdvSVsEFOAmGLp3767001eA92suiJGXl4f9+/dzyry8vHhTU21tbdGiRQtO2Z9//il6HQTGGGbNmgU/Pz/069cPrVq1QsOGDQVPexX7KPlDhw7xYvT29pa5vzrXTBk0aBBnOzs7m7c+myJijl8yAVRaWqrUNNYjR45g7ty5GD16NNzc3GBtbY1Vq1aJbkcVJI8pLS1N6jQ5RbZt24Y5c+Zg+PDh6NSpEywtLXHgwAFVhakUd3d32Nracsq2bt0qqo2bN2/yFplWpLo+UUYVKDFCCFGLhQsXol69epyyly9fwt3dHX/99Zfo9t6+fYthw4bh3r17nPIFCxZInTIDvF/kU3JO7YYNGwSt0B0UFIQTJ06IjrOmyMvL443gsLe3R5cuXVTS/siRI3mPnrt58yYiIyNV0j4hhEh68OABhg0bxhuR4OvrC2dnZ6l1pE3xE7so95kzZ3D58mVeubQv/xkZGbh9+3b5dmWm0QDAo0ePRH3BW7lyJW+xxqlTp0rdV/IGSHp6Ovz9/UXFt2fPHt6UmKFDhwp+4swff/wh+O5+QUEBfv75Z05Z8+bNZY46BdT3KFbgfWJE8gbO8uXLBf99paWlYePGjYL7GzlyJG8079q1a0VNGS4uLpa63o6saWjqNmXKFN7v6KeffhI1bfrdu3e8ZKmJiQm8vLxUEqOy9PT0MGPGDE7ZxYsXeYlLWYqKijBz5kyl+q2tKDFCCFELKysrBAUF8TLPb9++xahRo9C7d28cOHBA4QeAuLg4/Pzzz2jXrh3Onz/P+Vm3bt3wn//8R2ZdU1NT3mJ6jx49wrhx42QmR4qKiuDv7w8/Pz+5cdV0hw4d4n3YVNVoEeD9ivwjR47kldOoEUKIquXm5mL9+vVwd3fnfQm0t7fH6tWrZda1trbmfUm/evUq3rx5I6jvBw8eYPLkyVJ/Ju36d+HCBc5UgMosvFrmiy++ELRw47Vr13iJg27dusHT01Pq/jNnzuSt8fDLL7/g0KFDguKKj4/Hl19+ySnT0dHBnDlzBNUH3t9w+eyzz2ROS6pozpw5iI2N5ZTNmzdP7h1yIyMjzrbYqS7y6Ovr45tvvuGUPX78GLNmzVI4jbekpAQzZsyQulCuLHXq1MHnn3/OKUtNTcWYMWMEJxLmzZvHew+HDRuGli1bCo5DlZo3b44xY8ZwyuLi4jB16lSZI7IqYoxh2rRpvP/P06dP5928qQqzZs1CgwYNOGV+fn64evWq3HqFhYWYNGmSUuuLqPNvXusxQghRozVr1jAAMl9GRkasR48ezNfXl82bN48tXLiQff7552z06NGsRYsWMus1b96cJSQkKOz/woULUus3adKEBQQEsFOnTrF79+6xs2fPssWLFzM7OzvOfr179+Zs+/j4yOzrxx9/5OxrZ2cn+H2Kj4/nxXj58mXB9T08PATHKUTfvn158URHR1eqTUkXL17k9WFubs6ysrJ4+/r4+Mj9O1LlKz09XaXHSQgRT9o5UdF5rbS0lOXn57OUlBQWGRnJ9u3bx2bNmsXq168v9f+6hYUFi42NVRjLgAEDeHU/+ugjlpmZKbNOUVER27BhAzM3N5d5rvn+++959fz8/Mp/bmVlxUpKShTGV5GsvmxtbdnNmzdl1gsJCWGmpqacOrq6uuz69ety+1u9ejWvLz09PRYQEMAKCwtl1rt58yaztbXl1Z0wYYLMOkFBQTKPb8yYMTLP3ZmZmWzq1Km8Og4ODnJjZIyxSZMm8eooInm98vDwkLlvfn4+a926NS+2iRMnsoyMDKl1UlNT2ciRI2W+F0FBQTL7S0tL433OAcA6derEoqKiZNbLy8tjs2fP5tUzMDBg//zzj8L3RCwxx/TkyRNmYWEh9f/o8+fPZdZLT09nY8aMkXpeSE5OVkls0kj7O5bnzz//5O1vaGjIvv/+e16cJSUl7Pz588zZ2Vnu5xx5tmzZwtlXR0dH7vvBWOU+/5ZR9edYZeiDEELUaO7cubC2tsbMmTOl3pEoKChAaGgoQkNDBbfp5uaGv/76i/fYXmk++ugjjB8/njfn9OXLl5g/f77cupMnT8bEiRNx/fp1wbHVBPHx8byFcjt27IgOHTqotJ++ffuiWbNmSExMLC/LysrC7t278dlnn6m0L0JI9bdjxw7s2LFDJW3Z2NjgyJEjgp5IMnv2bJw7d45TdvHiRbRv3x5+fn7o0aMHGjRogOLiYiQmJiIsLAz79+/nLQxqZmaGnJyc8m1pi4FX7Kdfv36VXuy6TFJSEnr06IGRI0di1KhRaNmyJYqKihAdHY1du3ZJvc798MMPUhdZrejrr7/GtWvXcPTo0fKykpISzJ8/H5s3b8bEiRPRs2dP2NjYoLCwEP/++y+OHDmC48eP80Z5tGjRAhs2bFDq+A4cOICrV6/C19cXffv2RYMGDfD27Vtcu3YNQUFBvJFCZmZmCAkJkTkVt4zkY4qjo6Ph5+cHX19fmJqaIiUlBf3791f692RkZISQkBD07NmTM21rz549uHTpEnx9feHp6Qlra2ukpKTg0qVLCAoK4iyaamlpKeiRvQBQr1497N+/H7169eJMKYuIiICzszM+/vhjDBkyBK1bt4aZmRmSk5Nx48YNBAcHIykpidfeqlWr4OjoqNSxq0rLli0RFBTEG4V68eJFtGnTBmPHjoWXlxeaN28OIyMjvHjxAleuXMGOHTukLhwbHByMhg0baip8hSZPnoyrV69y1hcpLCzEihUrsGrVKjg7O6NJkybIyclBTEwMbxRRw4YNOU/FUrSGiOTfPGMMo0aNwg8//IBGjRohPT0d7du35z1OuEbQeCqGEFIrxcXFsbFjxzIdHR2l7+TXrVuXLV++nBUUFIjqOz8/n33yySeC+9HR0WHffvstKy4uZqdPnxacwa4pI0YWLVrEiyUgIEDp9uSZP3++1DtXkmjECCG1i7Rzoqpenp6egkYcVjR+/Hil+zM1NWU7duxg06dP55RLjj6IjY3l/Hzbtm2i3zfJvocPH8709fVFxzxr1izBfebk5LARI0ZU6ndiZ2fHHj58KLcfaXfapd3xV/QyMzMTfH09efKkwvb+/fdfTh0xI0bKnD59mhkZGYk+lq+++ooNHjyYUyZkBMOZM2dY3bp1K/U7kzbiSVUk+xJyTMHBwczQ0FDp49HV1WUbNmxQS2wViR0xwtj7kSBiPseWvb788kveZ1NjY2O5faWnpyt8HwMDAzl1asqIEVpjhBCiEfb29ti3bx8ePnyIxYsXo3PnzoIWeNLT00PXrl2xdu1axMfHY+HChYIXZStjZGSEnTt34vz58xg0aJDMO0S6urrw8vJCaGgoVq5cWSsXoCotLZV6R3b8+PFq6c/Hx4dXFhERodQjJgkhRBZdXV14enrixIkTuHz5sqARhxUFBwdj7Nixovvt27cv7t+/jylTpvAWr46Ojsbz58/LtyUfd1vZhVcB4OOPP0ZISAjq1q0raP86depg8+bN+P333wX3YWpqikOHDmHp0qUwNTUVHePgwYMRGhqKNm3aiK67e/dumYvDStO5c2fcuXNH5ropkry9vRX+HsQ+9UOaQYMGITQ0FK1atRJcx8/PD7/++qtS/Q0cOBBhYWHo2rWr6Lpla8gFBAQo1be6+Pj44OLFi4JGgUmytbXFsWPH5K5bV5V0dXWxc+dO7Nq1S9Bolvr16yMoKAjr1q3jjcySXENEkqWlJX788Ue5+6jib14raTwVQwgh/192dja7ffs2279/P/vf//7HVqxYwZYuXcpWrlzJtm7dyq5evaqWu/cZGRns+PHjLDAwkC1fvpytWbOGHTlyhL1580blfRFCCBFP2REjxsbGzNramrVs2ZL17duXffHFF2zbtm3s9evXKolr3759rEuXLnJjMDc3Zx9//DE7c+YMp25qairvTuzXX39d/nMvL6/y8g4dOigVn2QsZXezExIS2IQJE2SOSrC2tmbffPONwrUEFHn9+jX773//y1q2bCn3PdLX12dDhw5lp0+fFty2vDvtR44cYS4uLjL7c3FxYcHBwaLXbGHs/YgYX19fpqurK7XthQsXcvZXZsRImYKCArZmzRrWqlUrmcfSqVMnduDAgfI6yowYqejo0aOsf//+zNjYWO7vzM7Ojv34448sJSVFVPvKkPV3LERxcTHbsWMH69Wrl8LRUu3bt2erV6+WuraZOmJjTLkRIxVlZ2ezffv2sXHjxjEHBwdWv359ZmhoyJo1a8b69evHNmzYwNLS0sr3/+abbzh9NWnSRFA/a9asYWZmZlLft549e3L2rSkjRnQYU7DsMSGEEEIIIaTcy5cvcevWLbx48QLv3r2DmZkZGjRoAHt7e7i5uUFfX9wyfgUFBbCysip/AsScOXOwdu1a0XFJrh8QFBTEGVGRnp6O69evIyEhAVlZWahfvz46duwIV1dXhettiBUXF4cHDx7gzZs3SE1NhaGhIerVq4e2bdvC1dUVJiYmotoLDg6Gr68vp0zya0xMTAwiIiKQlJQEXV1d2Nraolu3bmjRokWljycpKQnXr19HYmIiCgsLYW5uDltbW7i4uKikfUnR0dG4e/cuXr9+DX19fTRt2hROTk5wcHBQeV/A+6ck3bx5E0lJSXj79i3y8vJQt25dNGrUCK6urmo5RnXLzMxEWFgYXr16hbdv36KoqAgWFhZo2rQpunTpgiZNmlR1iGo3ffp0zvokrq6uuHv3rqC6mZmZuHr1KuLi4pCdnQ1TU1PY2NigQ4cOcHFxUVfIVYYSI4QQQgghhNQAihIj1ZmQxAghhMvb2xunT58u3x42bBhnsWTyf+ipNIQQQgghhBBCiJYoKSlBjx490KpVK7Ru3RqtW7eGt7c36tWrJ7iN4uJi3L59m1PWsWNHVYdaY1BihBBCCCGEEEII0RJ6enqIi4vjJDY2bdqEGTNmCG7j4MGDvEcSd+/eXWUx1jT0VBpCCCGEEEIIIUSLODs7c7a3bdsmePpYSkoKvv32W05ZvXr10L9/f5XFV9NQYoQQQgghhBBCCNEiI0eO5Gzfvn0bM2bMKF+kWZbo6Gh4eHggKSmJUz537lwYGhqqPM6agqbSEEIIIYQQQgghWuTTTz/FmjVrEB8fX162detWnDx5EpMmTULPnj3RtGlTGBgY4N27d3j48CFOnz6NEydOoLi4mNOWi4sLbwQJ4aLECCGEEEIIIYQQokVMTEywe/duDBo0CJmZmeXlr169wq+//opff/1VUDsdOnTAsWPHYGxsrK5QawSaSkMIIYQQQgghhGgZd3d3XLlyBU5OTkrVnzJlCkJDQ9G0aVMVR1bzUGKEEEIIIYQQQgjRQp07d8b9+/exfft29OrVCzo6OnL3t7CwwKRJk3Dnzh3s2LEDFhYWGoq0etNhQpe2JYQQQgghhBBCSJXJyMjAvXv38OTJE7x79w75+fkwNTWFjY0N2rdvj44dO0Jfn1bMEIsSI4QQQgghhBBCCKm1aCoNIYQQQgghhBBCai1KjBBCCCGEEEIIIaTWosQIIYQQQgghhBBCai1KjBBCCCGEEEIIIaTWosQIIYQQQgghhBBCai1KjBBCCCGEEEIIIaTWosQIIYQQQgghhBBCai1KjBBCCCGEEEIIIaTW+n/DmI169CeJcAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "\n", "\n", "fig, axes = plt.subplots(1, 2, figsize=(12, 5.5))\n", "\n", "# # Plotting with complementary colors\n", "# sns.histplot([x[0] for x in envelope_errors], bins=20, kde=True, ax=axes[0], color=\"#FF6347\")\n", "# sns.histplot(uptake_errors_array, bins=20, kde=True, ax=axes[1], color=\"#4682B4\")\n", "\n", "\n", "color_1 = \"#53b1b1\" # A standard blue color\n", "color_2 = \"#f6c624\" # A teal color\n", "\n", "# Plotting with chosen colors\n", "sns.histplot([x[0] for x in envelope_errors], bins=20, kde=True, ax=axes[0], color=color_1)\n", "sns.histplot(uptake_errors_array, bins=20, kde=True, ax=axes[1], color=color_2)\n", "\n", "axes[1].set_ylabel(\"\")\n", "axes[0].set_xlabel(\"Sum AE\")\n", "axes[1].set_xlabel(\"Da/peptide length\")\n", "fig.subplots_adjust(wspace=0.2)\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "from pigeon_feather.analysis import get_index_offset\n", "from matplotlib.ticker import LogLocator\n", "\n", "\n", "check_ana_obj = ana_apo_1\n", "index_offset = get_index_offset(check_ana_obj, './data/6XG5_TRI.pdb')\n", "\n", "uptake_errors = sorted(uptake_errors, key=lambda x: x[1].start, reverse=False)\n", "\n", "num_subplots_per_figure = math.ceil(len(uptake_errors) / 2)\n", "# num_subplots_per_figure = 250\n", "num_figures = math.ceil(len(all_idfs) / num_subplots_per_figure)\n", "\n", "\n", "for fig_index in range(num_figures):\n", " # Select the subset of errors for the current figure\n", " selected_uptake_errors = uptake_errors[fig_index * num_subplots_per_figure:(fig_index + 1) * num_subplots_per_figure]\n", " num_col = math.ceil(len(selected_uptake_errors) / 5)\n", "\n", " fig, axs = plt.subplots(num_col, 5, figsize=(9 * 5, 8 * num_col)) # Adjust subplot size as needed\n", "\n", " for i, error_tuple in enumerate(selected_uptake_errors):\n", "\n", "\n", " ax = axs[i // 5, i % 5]\n", "\n", "\n", " # Unpack error information\n", " peptide_data = error_tuple[1]\n", "\n", "\n", " ax.axhline(y=peptide_data.max_d, color='lightgray', linestyle='--', linewidth=5)\n", "\n", " check_fitted_peptide_uptake(\n", " check_ana_obj,\n", " hdxms_data_list,\n", " peptide_data,\n", " if_plot=True,\n", " state_name=check_state_name,\n", " figure=fig,\n", " ax=ax\n", " )\n", "\n", " #Retrieve and format the peptide identifier\n", " idf = peptide_data.identifier\n", " idf_start, idf_end = map(int, re.match(r\"(-?\\d+)-(-?\\d+)\", idf).groups())\n", " idf_seq = idf.split(\" \")[1]\n", " ax.set_title(f\"{idf_start - index_offset}-{idf_end - index_offset} {idf_seq}\")\n", "\n", " ax.set_xlim(1e1, 1e5)\n", " ax.xaxis.set_major_locator(LogLocator(base=10.0, numticks=5))\n", "\n", " # y_max = ax.get_ylim()[1]\n", " # ax.set_ylim(-0.5, y_max + 1)\n", " pep = error_tuple[1]\n", " y_max = pep.theo_max_d/check_ana_obj.saturation\n", " ax.set_ylim(-0.5, y_max + 0.5)\n", "\n", " # light gray dotted line at max deuteration\n", "\n", "\n", " handles, labels = ax.get_legend_handles_labels()\n", " new_labels = [label for label in labels if label.isdigit()]\n", " new_handles = [handle for handle, label in zip(handles, labels) if label.isdigit()]\n", " ax.legend(new_handles, new_labels, title='replicate', title_fontsize='small')\n", "\n", " # Layout adjustment and save\n", " fig.tight_layout()\n", " fig.savefig(f\"{results_path}/ecDHFR_uptake_errors_{check_state_name}_{fig_index}.pdf\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "if the fitting is bad, one should not move forward, need to check the parameters in the sampling, make sure they agree with the experimental conditions. one may also remove the outlier peptides and run the all the cells above again. a ourliter may be a peptide exchange a lot while its neighbours barely exchange (examples in the turtorial dataset: 78-92 VDEAIAACGDVPEIM, 75-78 VKSV)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "once you're satisfied with the fitting results, you can make the final results plots" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## barplot of the kex" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "barplot showing the FEATHER derived exchange rates. index_offset is determined by comparison to the sequence in HX/MS and the pdb file provided." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAD0EAAAOPCAYAAAAHBVjaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wURf7/8ffMRhYWEEmCJFE4BMmgYgCRIKgHSBBOEMF86n2Nd4aTYADMp54Rj6DgKUFQTyUIAiKKiARBQCRKkKTEZWd3Z/r3x/623WF3YUP1TPfO6/l4zOMxobvmM11d1VU1Xd0+y7IsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIBL+KMdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkxiRoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK7CJGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAArsIkaAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuwiRoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK4SH+0A4A4+n6/AzxITEyMYCQAAAAAAAAAAAAAAAAAAAAAAAAAAAEqTjIyMAj+zLCvf931WQZ8gppxsEjQAAAAAAAAAAAAAAAAAAAAAAAAAAADghIKmOvsjHAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnBSToAEAAAAAAAAAAAAAAAAAAAAAAAAAAAC4CpOgAQAAAAAAAAAAAAAAAAAAAAAAAAAAALgKk6ABAAAAAAAAAAAAAAAAAAAAAAAAAAAAuEp8tAOA+yUmJkY7BAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhURkZGkddhEjQkZU90zm8HSkxMVCAQiEJEAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA2SkpIKnMdaEL+TAQEAAAAAAAAAAAAAAAAAAAAAAAAAAABAUTEJGgAAAAAAAAAAAAAAAAAAAAAAAAAAAICrMAkapV6HDh3k8/nsR8eOHYu0fjAYVPXq1cPS2Lp1qzPB5uPIkSOaMGGCBgwYoMaNG6tChQpKSEhQ5cqV1ahRIw0aNEhvv/220tLSIhaTJI0YMcLeHhMmTCj0egsWLLDXu+GGGxyLT/JGjJJ34rzhhhvs7+vfv3+h1/v5558jEudtt91mf89ZZ52lY8eOFXv99u3bKxQKORRp/r799lvdf//9uuCCC1S5cmUlJCQoNTVVf/rTn3TddddpypQpysjIiGhMp7J161Z7m3Xo0CHa4UgKr/MjWVeXVOPGje24+/btG+1wJLl3W/bt29eO64UXXijy+seOHVO5cuXk8/lUpUoVR8tV7nrzZI/4+Hilpqbq7LPPVs+ePTV+/HgFg0HH4ioKN5Rzr7Xl3H68dOv2HDlypJ3eM888c8rlX3/99bAYJk6ceMp1HnzwQXv5SZMmlTjm/Li17jwVjkMF8/q+WZzt+Oijj9rr+P1+jR071mhMJ3J7vXkit+ybJ+PmfPdKW86tx8v8eKXNmXsMoySPSJS7wm7Tgh4rV650PMaTcUMbPodX9s8cXqjjc3PruLGbj0OF4aYylMNL++a+ffv00ksvqVu3bqpXr55SUlKUmpqqs846S126dNFzzz2nX375JSqxFaZOio+PV4UKFdSwYUMNHDhQ//3vfzle5uNU2zIuLk5ly5ZV7dq11bFjRz3//PPavXu3ozHl5tY2J/1LZ+t3t+Z7QWhzRoYbx7xyuK0tRxkyp4OHxhROxc1l3W1lSHJ/H5jzKZzl9n6b29ty+SHPzXB7nF44Z87tfeCixOqWfoYX4vRKvnuhDEnuH5fzWjvJ7duzMDG6pQy5vT7yWl89Nzf/VyCF159FfSxYsMDx+EpLGXJLnCdye19Dcn8Z8lqckrRu3ToNHz5c7du3V7Vq1ZSYmKhy5crprLPOUp8+fTR58mSlp6dHPC63H4ty6+Di/qXbx+VgkAVYlpWYmGhJyvNITEyMdmgl1r59+7DfFBcXZ/3666+FXn/u3Ll5tsuWLVucC/j/S09Pt0aMGGGVL18+37w58VGtWjXrtddeczyuHMOHD7e/e/z48YVe74svvrDXGzx4sGPxWZY3YrQs78Q5ePDgsH1u2rRphVpv48aNEYnz8OHDVp06dezv+r//+79Cr/vFF19YPp/PkmSlpqZGpIznWLt2bZ56qqBHrVq1rHfffTdisZ3Kli1b7Njat28f7XAsywqv8yOZjyXxzTffhOVzfHy8tXv37miH5dpt+dlnn9lxtWrVqsjrT5w40V7/nnvucSDCP5xYbxbl0bJlS2vv3r2OxlcYbijnXmvLuf146dbtuXjxYju9Hj16nHL5Hj16hMXQv3//U65z4YUX2ss7Vc+6te48GY5DJ+f1fbOo23HYsGH28n6/35owYYLRePLj9nrzRG7ZN0/GzfnulbacW4+X+fFKmzP3GEZJHpEodyXZppKsFStWOB7jybihDZ/DK/tnDi/U8Zbl/nFjNx+HCsNNZSiHV/bNf//731aFChVOuU8mJydbDz74oJWZmRnR+IpbJzVp0sTaunVrRGL0yvGyONsyOTnZeuqpp6xgMOhobJbl3jYn/Utn63e35ntBaHM6z61jXm5ty1GGzPHSmMKpuLGsu7UMWZb7+8CcT+Est/fb3N6Wy408N8vtcXrhnDm394FLGms0+hleiNMr+e6FMmRZ7h+X81o7ye3bs7gxRqMMub0+8lpfPYfb/yuwrPD6s6iPL774wvH4SnMZilY7ybK809fwQhnyUpxbt261evbsaR+vT/aoU6eONWvWrIjG5/ZjUW5u7l+6fVwO+SvOPNZ4ATEmGAzqgw8+0O23316o5d977z2HI8rr119/1VVXXaXly5dLkvx+v7p06aLu3bvrnHPOUaVKlXT48GH99NNPmjlzpubOnas9e/bo9ttv17p16/Tiiy9GPGbEnttvv13t27dX5cqVox2KJCk1NVVvvfWWOnfuLEl6+eWX1b9/f11wwQUnXe/48eO66aabZFmWJOmFF15Q3bp1nQ5XkjRt2jQNHDhQgUBAklS3bl31799f7dq1U7Vq1ZSenq61a9dq+vTpmjdvnn755Rf95S9/0eeff64333xTcXFxEYkTzho3bpyk7Pzftm2bsrKy9NZbb+mf//xnlCNzpy5duujMM8/Ujh07tHz5cm3YsEENGzYs9Pq575hy0003ORFivsaOHavWrVvn+1lmZqZ+/fVXffHFFxo7dqyOHj2q77//Xr1799bChQvl8/kiFqcXeKEtl5vbjpcncsv2PP/885WamqojR45oyZIlJ102MzNT8+fPlyQlJSUpEAho7ty5CoVC8vv9+a5z/Phxu23dtGlTVa9e3ewP8DCOQycXS/vm8OHD9dhjj0mS4uLi9M4772jAgAERj8Pt9WZpE+l892pbzi3Hy1Nxc5uzdevWWrFiRYGft2jRQpJ0xhln6NNPPy1wuRo1ahiP7WROtk0LUpR9Opa4ef/0ktI2buyW9gdK7l//+pfuueceSVL16tU1dOhQXXDBBapataokaffu3Vq4cKHGjx+vQ4cOacyYMdqxY4fefvvtqJTxguqkYDCoY8eOaf369Xr22We1ceNGrVmzRpdffrlWr16tlJQUR+Py4vEyv22ZlZWlI0eOaNu2bZo/f77++9//Kj09Xf/4xz+0ZcsWvfbaa47G5NY2J/1LZ+t3t+Z7YdDmdIYbx7zc3JajDDnHK2MKXuDmMnQiN/aBOZ8ChRXNvjp5DrdzYx+4KLGeSjT6GV6I00v57gVuHJfzYjsphxu3Z2FidGMZcmN95MW+utf+K5CkkSNH6s9//nOhlz/77LMdjCYvL5chN8Xplb6GV8qQV+KcP3++rrnmGh06dEiSdNZZZ2ngwIFq27atqlatqvT0dP3444+aPHmyvvzyS23btk3du3fX2LFjNXTo0IjFmcONxyIvcuO4HAyK1AxtuFus3Am6WrVqliSrQ4cOhVo3IyPDqlSpkiXJSkpKisiVK44ePWo1a9bM/q7WrVtbq1atOuk6ixcvtmrUqGGvE4krz3jhKnJeiNGyvBNnfldI6dev3ynXi/Qd2m6++Wb7+xo3bmwFAoGTLn/vvffay1999dWOx5djzpw5VlxcnCVlXzn3ySefPGms8+bNs04//XQ71qFDh0Ys1oK48erfbr7KUH7S0tLsK2H93//9n3X++edbkqzatWtH5Upnubl5W/7zn/+0Y3v00UcLvd727dstv99vSbIuuOACByPMlrveLOwVAH/88Ue77SHJ+uijj5wN8hTcUM691pZz+/HSzdvzyiuvtNPcsGFDgcstWLDAXu7222+3n3/zzTcFrjNv3jx7ufvvv99IvPlxc92ZH45DhePlfbOw2zF3nyQhIcGaOnWq8VgK4vZ680Ru2jcL4vZ890Jbzs3HyxOVhjanZVl2LHXq1Il2KMXapm7ihjZ8Dq/tn26v470ybuz249CpuKkM5XD7vrlt2zYrISHB3i9///33ApfdsWOH1bBhQ/v3TJkyJWJxFrVOOnTokHXeeefZ6zzxxBPOB3kKbjleFnVbrlixwqpZs6a9ztNPP+14jG5tc9K/dJZb8z0/tDmd5cYxLy+05ShDZnhpTOFU3FTWvVCGvNIH5nwKZ7i93+aFthx57gy3x+mFc+a80AfO4eY2Um5eiNMr+e6FMmRZ3hmX80o7yQvb0ytlyAv1kZf66l75r8Cyil9/RkppLUPRitMrfQ2vlCGvxPndd99ZKSkp9ncPGzbspHejHjdunBUfH29JsuLj463FixdHJE4vHItyuLl/6ZVxOYQrzjzW/C8VDZRSvXv3liQtWrRIe/bsOeXys2fP1m+//abExERdfvnlTocnSXrwwQe1atUqSdLFF1+shQsXqmnTpidd56KLLtK8efOUlJQkSbrvvvuUlZXleKyIXYmJiZKkKVOmaNq0aVGOJtxzzz2n2rVrS5LWrl2rJ598ssBlly5dqn/961+SpMqVK2vs2LGRCFGHDh3SwIEDFQwGJUnvvvuuHn74YXu75qdjx476+uuv7bt4jBs3jiuBlwLTpk2zrzDVoUMH9e3bV5K0ffv2k97NJdYNGTLEvtrS5MmTC73eO++8o1AoJCnydyIorEaNGoXdiWLSpElRjMZ9vNCWy83Nx0vJfdszd5pfffVVgcvNmjVLklS+fHk98MADed7Pz6JFi+znXbp0KUmYpQrHocIp7fvmyJEjNXLkSEnZ9da0adPUp0+fqMTi9nqzNIlmvnutLee246UJtDnhZuyfBStN48Zuan+g5N566y1lZmZKkl599VVVrFixwGVr1qwZVq5feOEFp8MrtvLly+uZZ56xX+e+awaKpnnz5vrkk0/s9v7IkSO1d+9eR7/TrW1O+pfOcmu+I/LcOOblhbYcZci80jimEC1eKEPFEY0+MOdToCDRbMuR5yhNotEHRvSR72ZFa1zOC+2k4vDCOCdlqGBe6quX1v8KvMArZSgacXqpr+GVMuSFOAOBgK677jqlpaVJkp555hmNHDlS8fHxBa4zZMgQjR49WlL2XczvuOMOWZYVkXgRHZyb4k1MgkZMufbaayVJoVBI06dPP+XyOQ2Wrl276rTTTnM0NknatGmTXnvtNUlSamqq3n//faWkpBRq3T/96U+66667JEm7d+8+6YkQQEkNGzbMfv7Xv/5V+/bti2I04VJTU8MGlUaPHq01a9bkWS4jI0M33nij3dF/4403VK1atYjE+NRTT9kdtzvvvNOum07lnHPO0csvv2y/fuCBB+yOBLxp/PjxkqSUlBR16dJFAwYMkN+f3Tx7/fXXoxmaq5111lnq0KGDJGnz5s365ptvCrXeO++8I0kqV65coctdNHTq1Ml+vnHjxihG4j5ub8udyM3HS8l92zP3vl+YE4E7dOigevXqqVGjRmHv52fhwoWSpOTkZF1yySUmwi0VOA4VTmneNx977DGNGDHCjmHmzJn685//HPE4cri93iwtop3vXmvLue14aQptTrgZ+2depWncONrHIZiXe+y1YcOGp1y+devWatKkiSRp9erVjsVlQufOnZWQkCApuz46fvx4lCPyrmbNmumee+6RJB07dizsxEsnuLXNSf/SWW7Nd0Se28a8vNKWowyZV1rHFCLNK2WouCLdB+Z8CuQn2m058hylTaT7wHAH8t2saIzLeaGdVFxeGOekDOXPS3310vxfgRd4pQxFOk4v9TW8Uoa8EOe4ceO0YcMGSVK7du10//33F2q9u+++W/Xr15ckrVq1Sl988YVjMcIdODfFe5gEjZhy4YUXqlatWpKy7yx1Munp6froo48kSQMGDHA8Nin7aig5V5q544477CvIFNYtt9yi888/X8OGDVODBg2cCBGQlP2Hbc6Vq/ft26c77rgjyhGF69Kli2688UZJUmZmZtigU44nnnhCa9eulSQNGjRI11xzTURiCwQCeuONNyRlXz33kUceKdL611xzjX0C044dOzRz5kzTISJCtmzZogULFkiSunXrppSUFNWoUUMdO3aUJH322Wfatm1bFCN0t6FDh9rPC3OVw6VLl2r9+vWSsuuwcuXKORZbSeW0BaTsOgN/cHtb7kRuP166bXs2adLE/mOooBOB9+zZY9/toWvXrpL+uLvRsmXL9Ntvv+VZJyMjQ0uXLpUkXXLJJUpOTjYeuxdxHCq80rpvPv744xo+fLik7JOC//e//6lbt24RjeFEbq83SwO35LuX2nJuO16aQpsTbsb+mVdpGTd2y3EIzvnyyy8Ltdzzzz+vKVOm6H//+1+ecVs38fv9qly5sv364MGD0QumFMiZgCRJM2bMcPz73NjmpH/pPDfmOyLLjWNeXmrLUYbMKq1jCpHmpTJUHNHoA3M+BXKLdluOPEdpFek+MNyBfDcnWuNybm4nlYRXxjkpQ/nzYl+9tP1X4BVeKUORitPLfQ2vlCG3xpn7Qpg5/d3CiI+P16OPPqr77rtPM2bMUMuWLZ0IDy7CuSnewyRoxBSfz6e+fftKyj7o/vrrrwUu+8knn+jIkSNKSUmJ2NUtczfk+vXrV+T1zznnHH3zzTcaOXKkK/+8Qeny6quv2gMjU6dO1dSpU6McUbjnn39eZ555piTp22+/1VtvvWV/tnbtWj311FOSpFq1aoVdrclpCxcutE9S6tSpk6pXr17kNHLXDx988IGx2BBZ48ePl2VZkrIHRHNcf/31krKvCv/mm29GJTYv6N27typUqCBJev/995WVlXXS5SdOnGg/v+mmmxyNraRyTtCSZN/lBdnc3pbLj5uPl27bnj6fzz4Zcf369Tpw4ECeZWbPnm3XnSeeCBwMBjV37tw86yxbtsy+im3OsuA4VBSlcd984okn7LsulytXTp999pkuv/zyiMZQEDfXm17npnz3UlvObcdLU2hzws3YP/MqDePGbjoOwaxWrVrZz2+++WbNmTPnlOt07txZffv2VYcOHew7c7pRZmamPZbr9/t1+umnRzkib6tZs6Z9tf9NmzZp69atjn6fG9uc9C+d58Z8R2S5cczLS205ypBZpXVMIdK8VIaKI1p9YM6ngOSOthx5jtIq0n1guAP5bk40x+Xc2k4qCa+Mc1KG8ueVvnpp/q/AK7xShiIVp9f6Gl4pQ26Pc8eOHfYdp8uVK2f/J1NYgwcP1rPPPquePXuqYsWKDkQIN+HcFO+htYCYc+2110rK/oNz+vTpBS733nvvSZKuvvpqlS1b1vG4duzYoS1btkiSzjjjDLVo0cLx7wRKomrVqnrllVfs13fccYf27dsXxYjClS9fXmPHjrVfP/zww/rtt99kWZZuueUWZWRkyOfzafz48fYAQSQsXrzYft6uXbtipdG9e3f7eUF3i4C7hUIhe7CpSpUqYXnau3dvpaamSpLGjRunzMzMqMTodmXKlLGvhL9v3758T/7LkZGRoffff1+S1LhxY11wwQURibE4tm/frjFjxtiv//KXv0QxGndya1uuIG4/Xrpte+Y+sWLJkiV5Pp81a5Yk6ayzzlL9+vUlSR06dFBSUlLY57ktWrTIfs4k6Gwch4quNO2bTz75pB599FFJUmpqqubMmaNLL700Yt9/Km6vN73Kbfnutbac246XJUWbE27G/plXaRg3dttxCGbdfPPNKl++vCRp9+7d6tq1qxo0aKC///3vmjVrlo4cORLlCItv7ty59lW/W7VqpcTExChH5H3nnnuu/XzlypWOfpdb25z0L53l1nxHZLhxzMtrbTnKkHmlbUwh0rxWhooqmn1gzqeAW9py5DlKs0j2geEe5LsZ0RyXc2s7qSS8NM5JGcrLK3310vxfgZd4pQxFIk6v9TW8UobcHuf3339vP7/wwgsVHx8fxWjgZpyb4k2UaMSctm3bqm7dutq6daumTp2qO+64I88yR48e1SeffCJJdsfBaevWrbOfn3322RH5TlO2b99e6Abozz//7GwwBfBCjJJ34szRr18/TZ06VdOmTdO+ffv017/+1VV3arviiis0ZMgQjR8/XgcOHNDDDz+s888/3z6x6K677or4VWx/+ukn+3nOCUxFVbt2bfl8PlmWpV9++UXp6elKTk42FSIi4PPPP9f27dslZTeaExIS7M9SUlLUp08fjR8/Xr/++qtmzpxpXyUe4W688Ua9/vrrkqTJkyerW7du+S738ccf21d0u/HGGyMWX2GEQiEdPnxYv/zyi+bOnasxY8bYE72uvPJK9erVK8oRuo9b23In4+bjpdu2Z6dOneznX331la6++mr7tWVZ9kB+zp2QpOx686KLLtL8+fM1e/bsPGkuXLhQklS9enU1bdrUqdA9heNQ0ZWWfXP06NH65z//ab/OyMhQSkpKRL67KNxcb3qRW/PdS205tx0vi4o2Z/H9/PPPRbq6b+3atVWpUiXnAiqF2D9PzcvjxpJ7j0Mwp2rVqpo2bZp69Ohh34l248aNeuaZZ/TMM88oLi5OTZs21WWXXaauXbvqsssuC+uDuNXu3bt19913269vueWW6AVTitSoUcN+vn//fse/z41tTvqXznNjvp8MbU5z3Djm5cW2HGXILK+PKUSbF8vQybitD8z5FLHLTW058hw5vHbOXGFEug+cm9vbSDm8EmdRRCvfS1MZcsO4nBvbScXlhu1ZFNEqQ26vj7zQV/fqfwWFrT8rVKigevXqOR9QCUWz/VEUkYjTa30Nr5Qht8eZ+87idevWjdj3muD2Y5HXuW1cDsXDJGjEpH79+unpp5/Wl19+qV9//VXVq1cP+/zDDz/U8ePHVaFCBV1xxRURienAgQP282rVqp102YMHD4YdoPOTmJgYdpUcJw0fPlzDhw+PyHcVlxdilLwTZ26vvvqqFixYoP3792vatGmaMmWK+vXrF+2wbC+88ILmzJmjnTt3auzYsZoyZYokqWHDhmFXb4mU33//3X5elIZqbvHx8apUqZJdbxw8eDBPPQZ3GzdunP188ODBeT4fPHiwxo8fL0l6/fXXmXxWgNatW6tp06ZavXq1Zs6cqWPHjuV7dfy3335bUvaxcdCgQZEOU5J02WWXFWn56667TmPHjpXP53MoIm9zY1vuVNx8vHTT9qxTp47q16+vTZs25bl64nfffWcPeuY+ETjn9fz587V7926tWrVKzZo1kyQFg0H7T6jOnTs7GruXcBwqutKwbz711FP2n2Lx8fHKyspSIBDQtddeq+XLl7vuDjNurje9xM357qW2nOSu42VBaHOad/PNNxdp+fHjx+uGG25wJhiPY/8sPi+PG7v5OASzOnfurBUrVuj222/XF198EfZZMBjUihUrtGLFCj3//POqXLmyHnjgAd1zzz1RO8GpoJMIAoGAfv31Vy1evFjjxo2zTxa7+OKLqd8NyV3uc9dvTnFjm5P+pfPcmO8nQ5vTHDeOeXmxLUcZMs8LYwpu5cUyJHmrD8z5FLHHbW058hw5vHjO3KlEug+cmxfaSJJ34iyKaOW7V8qQl8bl3NZOyo+XtmdhRasMub0+8kpf3Wv/FUiFrz979OihmTNnOh9QCUWz/VEUkYjTi30Nr5QhN8eZ+07UlStXdvz7THL7scgrvDQuh6LzRzsAIBquvfZaSdlXc5g2bVqez9977z1J0jXXXKOkpKSIxBQKhezniYmJJ1121qxZatGixUkf3bt3dzpkQJJUpUoVvfLKK/brO+64Q3v37o1iROEqVKigN998U1J2Ofv9998VHx+vd955R2XKlIl4PJZl2c9L0ljy+/84hMfFxZUoJkTW77//bg+GnHfeeWrRokWeZS699FL7qnFffPFF2BXJEG7o0KGSpGPHjuU7yLRv3z599tlnkqSePXu6tlMbFxenxo0b64477tDSpUs1adKkqNRRXuHGttypuPl46bbtmXO13GXLlikjI8N+f9asWZKkhIQEdezYMWydLl262M8///xz+/mKFSvsga3cy8QyjkPF5/V9M+ekpho1amj58uU677zzJEkbNmzQnXfeGZEYisLN9aaXuD3fvdSWc9vxsjhoc8LN2D8L5uVxY7cfh2BWw4YNNX/+fP3444967LHHdNFFF+V7MsP+/fv1j3/8Q61bt7avrh1pN998c77l44ILLlDPnj317LPP2icGdu7cWTNnzlR8PNeVNiEQCNjPc49xO8mNbU76l85zY77DWW4d8/JqW44yZFZpGFOIFq+WoVNxUx+Y8ylij9vacuQ5SrNo9IERfeT7yXlpXM5t7aT8eGl7FhZlqGBe6at76b+C0sgrZSgScXq1r+GVMuTWOHPnUe79DMjhpnE5FJ17j2yAg1q2bKmzzz5bkjR16tSwzw4ePKg5c+ZIkgYMGBCxmHJfYebgwYMR+14Txo8fL8uyCvU48WovxOjNOE/Ur18/9enTR1J2Y/Wvf/1rlCMK1717d/vPZUm699571aZNm6jEctppp9nPc19lqqhy1vX7/Tr99NNLHBci591337U7VvndiUDK7nBff/31krI74jl/RCKvgQMH2ic9TJ48Oc/n7777rjIzMyVJN954Y0Rjy23s2LH21c1WrFihr7/+Wm+++aYaNGggKbssd+rUSU8//bTatm0btTi9wo1tucJw6/HSbduzU6dOkrIHoZYvX26/P3v2bEnShRdeqNTU1LB1mjVrZt8FIncbadGiRXnSjXUch4qvNOybZ555phYuXKimTZtq8uTJ9kmVEyZM0LvvvhuxOArLrfWm17g5373SlpPcd7zMD21O87744otCj9NYlsVVdk+C/bP4vDxuLLn7OARnNGrUSI8++qgWL16sgwcPau7cuXr44YfVtm3bsJNMVq9erW7duoVNbIm2pKQkValSRW3atNHtt9+uhQsXas6cOYy/GnTo0CH7eXHvvFBUbmxz0r90nhvzvSC0Oc1w65iXV9tylCGzvDCm4FZeLUNe6wNzPkXscVNbjjxHDq+eM3cy0egD5/BCG8lLcRZFtPLd62XIreNybmonFYVbt2dhRKsMeaE+8lJfXfLOfwWFrT+9cBdoKbrtj6KIRJxe72t4pQy5Lc5KlSrZz/fv3+/od5nmhWORF3htXA5FwyRoxKx+/fpJkhYvXqzdu3fb70+fPl0ZGRmqWrVqnqusOymnUpWkjRs3nnTZ/v37F3gwq1mzptOhAvl69dVXVaVKFUnZ5ej999+PckTh/vSnP9nPGzVqFLU4ilLWC7J9+3ZlZWVJkqpXr+7qq3Uhr3HjxtnP77//fvl8vnwfI0eOtJebOHGi0tPToxGu651++unq0aOHJGnu3Ll5rhT29ttvS5Lq1KkT1QmQZ599tpo3b24/LrjgAt188836/vvv1blzZ2VmZurFF19Ux44ddfTo0ajF6SVua8sVlluPl27anh07drQHwBYvXiwpe+Bz6dKlkqSuXbvmWcfn86lz586SpC+//FLBYFCStHDhQklS06ZNVb16dcdj9wKOQ8Xn9X2zdu3aWrhwoX3C5Xnnnacnn3zS/vy2227Tpk2bIhJLUbi13vQKt+e7V9pyOdx0vMwPbU64Gftn8Xl53NjtxyE4LyUlRZ06ddKTTz6ppUuXatOmTfbkM0lavnx5nolAkVDQSQTp6enau3evvv32W7366qu69NJLIx5babdr1y77eaTqJTe2OelfOs+N+Q5nuXXMy6ttOcqQeW4fU3Arr5YhL/aBOZ8idritLUeeozSLRh8Y0Ue+n5wXx+Xc0k7Kjxe356lQhgrm5b66W/8rKI28UoYiEWdp6mt4pQy5Ic7c+b5jxw5Hvwvu5MVxORQeIz6IWTlX5wqFQpo+fbr9fs4J1X379lVcXFzE4qlfv759BfeNGzeG/fEFeEGVKlX0yiuv2K/vvPNO7d27N4oRudNFF11kP//qq6+KlcaCBQvs5x06dChhRIik1atX6/vvvy/yer/99pumTJniQESlQ86VC7OyssImRq1du9be3kOGDHHln51ly5bVtGnT1LBhQ0nS0qVL1bt3b1fdBcmt3NaWKyy3Hi/dtD1PP/10NW/eXJK0ZMkSSdLnn39uDyjmdyKwJHXp0kWSdPjwYS1fvlyWZdnH2pzPYh3HoZLx+r45Y8YMnXXWWWHv3XvvvbrsssskSUeOHFH//v3tKwO7hVvrTa/wQr57qS3npuNlUdDmhJuxf56al8eNvXAcQskEAgFt27ZNy5YtK9SfxPXq1dPEiRN1zz332O/l3PkWsWHZsmX280jeNcdtbU76l5HhtnyHc9w85uXlthxlyCyvjilEm5fLUH7oA58a51M4z21tOfIcpVm0+sCILvIdKBnK0Mm5ta/OfwXu4ZUyFIk4vdTX8EoZ8kKcrVu3Vnx8vCTp66+/ViAQKNL6O3bs0K233qr//ve/YZP14X2My5UO/BuBmNW0aVP7Cl05f27u27dP8+fPlyQNGDAgovH4fD716tXLfj1p0qSIfj9gQt++fdW3b19J0v79+3X77bdHOSL36dChg0477TRJ0rx58056laGcOzmcaPLkyfbzbt26mQ0QjvrPf/5jP3/ggQc0derUkz4eeughe/nXX389GiF7QufOnVWrVi1J4eVj4sSJkiS/368hQ4ZEJbbCKF++vN577z0lJiZKkubMmaOnn346ylG5n9vackXhxuOl27bn5ZdfLumPAc958+ZJyp4M2bJly3zX6dKli30XpSVLlujHH3/UgQMH7M/AccgEL++blSpVyvOez+fTxIkTVbFiRUnSd999pwcffDBiMRWWG+tNr/BCvnupLee242VR0OaEm7F/npyXx429cBxCyYwcOVJ169ZV27ZtNXfu3EKvd99999nPuQp77Pjhhx/sCxo1btxYVapUidh3u7HNSf/SeW7MdzjDzWNeXm7LUYbM8vKYQjR5uQwVhD7wyXE+hfPc1pYjz1FaRbMPjOgh34GSoQydmlv76vxX4A5eKUORitNLfQ2vlCEvxFmuXDl7wvrx48e1aNGiIq3/0Ucf6c0339Rf/vIX3XnnnQ5EiGhiXM77mASNmNavXz9J2Vd32bNnj6ZPn65gMKhatWqpXbt2EY/nrrvusq++NGrUKG3fvj3iMQAl9corr9gdkg8++EDvvfdelCNyl+TkZN12222Ssq/G9thjjxW47NVXX62rrrpKM2bMsN9bvHix5syZI0mqVauWPRkE7peRkWF3iMuUKaNHH31Uffr0Oenj0UcfVYUKFSRlX5Fq9erV0fwJruX3+3XDDTdIkr755htt375dlmXZ9U+XLl1Uu3btKEZ4as2bN9ejjz5qvx42bJjWrFkTxYi8wW1tuaJw4/HSTduzU6dOkqSdO3fq119/1ZdffikpezA/52TfE1WrVk1NmzaVJK1atcpeJzk5WZdcckkEonY3jkNmlMZ9s1atWnr11Vft1y+88II+++yzKEaUPzfWm17mpnz3WlvOTcfLoqLNCTdj/zy50jZu7KbjEEqmQYMG9vNPP/200OuVK1fOfn7mmWcajQnulbvcDxo0KKLf7cY2J/1L57kx32GeF8a8vNqWowyZ5+UxhWjyahk6GfrABeN8iuiJVluOPEdpFc0+MKKHfAdKhjJ0am7tq/NfgTt4pQxFKk4v9TW8Uoa8EufQoUPt5y+++GKh1wsGg3rllVfs1wMHDjQaF9yBcTlvYxI0Ytq1114rSQqFQpoxY4Z9xd3+/fsXeIKBk84991z7jlYHDx7UgAEDdOTIkUKvv3z5ch08eNCh6IDCqVKlSlgD8PHHH49iNO704IMPqnr16pKksWPH6p133smzzIEDBzR37lx98sknuuaaa3T55Zdr0aJFdr0lZV9RKSkpKWJxo2Q++ugj+64cPXr0UGpq6inXKVOmjPr372+/fu211xyLz+uGDBliH7tnzpyppUuX6pdffpEk3XjjjdEMrdAefPBBtWjRQpKUmZmpm266SaFQKMpRuZvb2nJF4cbjpZu25yWXXGJfbW327Nlau3atJKlr164nXS/n89WrV+vrr7+200pOTnYwWm/gOGRGad03BwwYYN9txrIsDR48WLt3745yVOHcWG96nZvy3UttOTcdL4uDNifcjP2zYKVx3NhNxyEU35VXXmm3j9955x398MMPhVrv448/tp/nXI0dpduyZcvsO7VWrFgxKm08t7U56V9GhtvyHeZ5YczLy205ypBZXh9TiBYvl6GToQ9cMM6niJ5oteXIc5Q2bugDI/LId6BkKEOF58a+Ov8VRJ9XylCk4/RKX8MrZcgrcfbr10+NGjWSJH3yyScaP358odYbPXq0fvzxR0lSkyZN1LNnT6dCRJQxLuddTIJGTDv33HPVuHFjSdJ//vMfLVq0SJLsAd1oeOaZZ3T++edLkpYsWaIWLVpoyZIlJ11n//79+sc//qF27drp2LFjksSfZIiqvn372lc8ysjIiHI07lO+fHm99957SkhIkCQNHjxYTzzxRNi2qlSpkhYsWKDrr79efr9f8+fPV/v27bVr1y5J2VcpGjJkSFTiR/GMGzfOfl6Uq5flviLV5MmTdfToUaNxlRb16tXTZZddJin77pBTp06VlD1hqkePHtEMrdDi4+P15ptvKi4uTpK0dOlS/fvf/45yVO7mxrZcUbjteOmm7ZmSkqILL7xQkvSvf/1LlmVJyr5i6cnkfL527Vp99dVXhVonVnAcMqM075uvvvqqatWqJUnat2+fBg4c6LrBPbfVm6WBW/LdS205Nx0vi4M2J9yM/fPkSuO4sVuOQyi+KlWq6L777pMkBQIBde7cWbNmzTrpOl999ZX+9re/ScpuA3jlGIriW758ua655hplZmZKyj6JpHLlyhGPw21tTvqXkeG2fId5Xhnz8mpbjjJkltfHFKLJq2XoZOgDF4zzKaIrGm058hyliVv6wIgs8h0oGcpQ0bixr85/BdHllTIUjTi90tfwShnySpxxcXEaP3684uPjJUk333yznnvuOQWDwXyXD4VCGjVqlH134MTERL311lvy+5luWVoxLudd8dEOAIi2a6+9VsOGDdN3330nSWrQoIF9VYdoKFOmjGbNmqVrr71Wc+bM0aZNm3TRRRepefPm6tevnxo2bKgaNWro6NGj2rJliz799FPNnj1bx48ft9M4//zzuUsbou6VV17RggULtG/fvmiH4krt27fXzJkz1a9fPx07dkyPPvqo/vOf/2jAgAFq166dqlatqkAgoDZt2ujbb7/V+vXr7XUTExPtq12jYKNGjVL58uVPuVyZMmUcv5Pgrl27NGfOHEnZncCinJTWtm1bNW7cWGvXrtWRI0c0efJk3XrrrU6Fmi83bcuTGTp0qObPn6/Fixdrw4YNkqTrr7/eHsDwgtatW+vOO+/Uiy++KEl65JFH1LNnT9WuXTvKkbmX29pyReW246Wbtufll1+uhQsXauXKlZKkZs2a2VdmLMjFF1+slJQUpaWladOmTZKidyKwm+pOjkNmeX3fLEjFihU1YcIEderUSZZlaf78+Ro9erQeeeSRaIcWxk31ptv2zeJwU757qS3npuNlcdDmLLyff/5ZFStWLNI6FSpUUL169ZwJKAa4Zf90Yx1fGseN3XQc8go37ptPPPGENm3apClTpmjPnj3q1q2bLrzwQl1zzTVq3LixKleurCNHjmjjxo363//+p08++USWZalChQr68MMPXXmsR+Hld6wMBAI6fPiw1q9fb989IWfSxJ133qnbbrstCpFmc1ubk/5lZLgt309Em7P4vDTm5eW2HGXILK+PKUSLl8vQybilD+xGXj6fwo39tqKIVluOPHeeV+J0My/1gb3SRvJCnF7Kd8CNvFKGvFAf5ebGvjr/FTjDy2XILXF6pa/hlTLklTjPP/98TZo0SQMHDlRWVpbuv/9+vfbaaxo0aJAuvPBCVapUSYcOHdJ3332niRMnat26dZKkhIQETZw40b4YXyR56VhUGvqXjMt5lAVYlpWYmGhJyvNITEyMdmgl1r59e/v3ZGZm5vl8w4YNYb95+PDh+aZz3XXX2cts2bLF2aAtywqFQtbYsWOtWrVq5Zs3+T1at25tvfPOO1YwGHQ8vuHDh9vfO378+EKv98UXX9jrDR482LH4LMsbMVqWd+IcPHiw/X0bN24s1DpTp04N20cjEWdBirudnfbzzz9bXbt2LVQZT01NtZKSkixJVlxcnHXXXXdZu3btilrsW7ZssWNr37591OLILXedX9hHhQoVHI/rySeftL/vrrvuKvL6zz77rL1+8+bNHYgwL7duy5M5fvy4VbFixbCYfvzxx6jFk7ve/OKLLwq93pEjR8KO/927d3cuyFNwQzn3WlvO7cdLL23PJUuWhMXy97//vVDrdevWzV6nevXqjsRWELfWnRyHzPLSvpl7Oxa2rN577732OvHx8dZXX33laIxurzdP5OZ9M78Y3Zrv+XFTW85Lx8vS0Oa0LMuOo06dOlGNw7LCt2lxHj169Ihq/G5ow+fw2v7phTrestw/buzV41AON5WhHF7YNzMyMqzRo0db5cqVK1R87dq1s3744YeIxljcOslN3HK8LM6xskKFCtZLL70U1bgty11tTsuifxkpbst3y6LNaYoXx7zc3pbLD2WoaLw0pnAqbinrubm5DHmtD3wizqcoGbf327zUliPPYytOL5wz56U+sJvbSF6L0yv57oUyZFneH5dzWzvJC9vTK2XIC/VRQdzYV7csb/xXYFnuK9cnKs1lKJr/FXihr+GVMuSVOC3LshYvXmw1atSoUHE2aNDA+vLLLyMan5eORW7uX3p9XC5WFWceK/dnR8xr0KCBmjdvbr/u379/9ILJxefz6aabbtLmzZv10Ucf6dZbb1WrVq102mmnKT4+XqmpqTrrrLPUpUsXPfHEE/ruu++0bNkyDRw4UH4/RRvu0KdPH/Xr1y/aYbha/fr1NWvWLH333Xe677771LZtW5122mmKi4tTSkqKzjnnHPXp00dvvfWWdu7cqVWrVunSSy9VMBjUyy+/rLp162rmzJnR/hk4hQkTJtjPBw4cWOT1Bw0aZF/9auXKlVq6dKmp0EqV5ORk/eUvf7Fft2vXTo0aNYpiRMVTrlw5vfLKK/brTz/9VO+++24UI3I3t7blisJNx0s3bc82bdqEXS2usHdy6dq1q/28c+fOxuPyIo5DZpX2fXPUqFE677zzJElZWVn6y1/+ot9//z3KUYVzU71ZWrgh373UlnPT8bK4aHPCzdg/T640jhu74TiEkklISNCDDz6ozZs366233lLfvn3VqFEjVa1aVQkJCapUqZIaN26sm2++WbNmzdLixYvVpEmTaIcNh8TFxal8+fJq0KCBrrnmGr3++uvasmWL7rrrrmiH5ro2J/3LyHBbvsMcL455ebEtRxkyqzSMKUSTF8vQqdAHPjnOp4ieaLXlyHN4jZv7wHAO+Q6UDGWo5NzaV+e/gsjwShlyW5xe6Gt4pQx5JU5Juuiii7RmzRp99NFHGjp0qJo1a6aKFSsqPj5eZcuWVf369TVgwABNmzZNa9eu1cUXXxyVOBEdjMt5j8+yLCvaQSD6kpKSlJGRkef9xMREBQKBKERkjmVlXw7AbKKSfKTp2jS9EGOMp+nEoSc7TbOBhixLPp/ZNIOhkEr68y3L0tQp7+ulF/+lH9eu0fqfNqtKtapmAsz1HX6Dv91yYFs6kWacz6e4ONOFSOb3o6ClkOGjWzBomS/rIUs+v9lE0zODChquQ46kZykrZHh7WpaS4uKMpXcsPUs+w3meHshUvOF9M5B+XIk+s3EGskJKSko0mmam/CpTJslomsGQpaTEeKNpZmQFlRBn9qSc4+mZijdcLjOzQkpMMLe/S1JGVkiJ8eZ+eyAzaDQ9SbJ8PqWUSTCaZmbQUoLh41BGVkgJhvM8IxhSouF90x/nU1nDZSgp3q8Uw/umFbIkw9tTluQ3nGbICslnum0csiSDx42Q4fZmjjjD29KJNmcwFJITHTfT29OJ3256P5Kc2ZecSNPnM7t/Wg7sRk7UHV7pC8qS8b6Lz2cpzmf2eOnWcYoTOXG8dKJ/aTpNL8QY62k60e5yok7KCAZleJhCsmS8f2lZltHtGcgy/7uDoZDiDE92ieU0LctSvOn9KGS+DZ+WFcxudxoUCIYUZ7isp2cF5TfY9gqGLCUlmM0fJ8Yp0jNDxrvVWSHL+DhFRlZI8YZ/e8iSkg3nkc8n42MfIctSvOH643hmUKY7MMGQ+f3Tktl9KStkGR+LdSJNv8+nJMNlyIkhtKyQ+f+xQiGz7RnJmWNbnF9KjDdc1kOW8fNo0rOyFAyZSy8zGDK+LTND5sd8vNOWCxmv330+nxJN/3YrVOI+lmVZmj71fb360ota9+NafffjRp1euYqhCHO+w/z2dGL/PJ6RJcsyl2ZmKKQEw787Ixgq8bHNsiz9b8ZUjX/93/pp/Y+at+xHVTN8Dk1mMGS8X50Y51Nqstn/xixLxvdNS5bx/lBm0JIMn1cQtMzHaTpNJ2KUZLxcBkMOjEM78Nv9fifGu4z/jeWZNH0y346VzJ8zZ/q8U0uW+f/GYjlNB87h9cp/jU78h+dEnFlBw2edOnG+SyhkvJLLCpr/c92JNpLlyPlDDvSDLUumLzPmxLiPiTGanP7lv1/6l9b9uFar1/+sKlUN9jUsGR/rc2JczpHT5Rz639Z0mj7J+H9jcuKY4dB5Y16YmxMy3T50oK0d5/MZ/8+pNCjOPFYmQUNS6Z0EbVlSIBjtKADkZlmWsoKmGxuWMg2f1JQdp9EkFQpZOnQ802ia27duVvUz6xpNU5IS4nzmTyp3uTi/T9UrJBn/3fGGt2UwZGn/kbzH7JIIhSwdNrxvOiE9K6jluw8aHYhLywhq9pq9Rk+y9fukCmUTjeV7RkZQP27cb3RiQjArqP2/7jd6pRgrM6DQtjUyGqjPL5U73WiP0p+QoNMa/Ek+g38E+v0+nV65nNGyblmWMjLMHoiysoLau+s341cISkxKMN/rN8iyLGUGzNZxCYlxanTema69c0QOy7IUCGRFO4xTSkrwq13DqkYHIVMS4nR1w6pmJxxaVvZJGQb5JJVJijNef5hub4csS2mG6yTTfD6pQpkE17dhnegT+CSlJJrdj5zghf3IKX6fdHo5c30Ny7KMX8THibrDS0z327LrpHgH6ndjyUlypk5y4ngJmOBEu8sJmcGQNu0/arTb5vdJVVLMj3kl+M3VnRnBkH7cf8j8BW1hjF9SxSRz4105kuL8RtNMzwrpu52HZHD+lYIhSwfSzB4vs4Ih/XrwuLH0/D6pYlnz5dy0rGBIe34/brSs+yQlJZrdj0KWpUCGyb3o////cFoZo3EmxvnUrGY5oyc2+SSVSTDbNs4IhrRhb7rxfC+TYDbf/T6pSlmzbXgvSPD71Oj0VEcuVGdS0LJ0yPAYr1NMH9sS4nxqUNVsHjkxRpOeFdTynb8ZK+shy9LxTPNjnMczzdbvXuFEvRnv96luhRTjF1YPmJxJL+mXbVt0rGwV1x+HnNg/A1khrd55xPjF70wKWZYCmWbro7R9O5VSpabRNJ1QNjFOvZpVN/o/lk9ShUSz/5P4JCUbPrZlhULac9y756O6SZzPp2plzPYFQ5aldMN1sRPi/T7VPb2s69uxXuF34D8Nyfx/L7H+X5bbOXEOr1c48R+eE7LPOzV3DHbif5eQZem44YkfwZClA8fNnm/rRBtJ8sZ52078F+zUuI/pMZpd27eoUo3axtLzS6qQ5P7znJzixP5u8r9LKbuNVDnViXkF5i8UY/q3e2VujmVZyvBI+7BmxUQmQp+gOPNY3X3GNlBC3qjOAJSUV8q66SvNSNKZdeoZT9Mn841rL/D7nPndbr9ikVNpOiHLgavSB7JCxu8y5POZ7UxmBc3fmS0UCpmvPINZZidAS9mToE3fhTEu3ugEaCl7ErT5q3kaTU6SFAqaz3efz+fqCdCS+SsBS1J8fJzrJ0BLzuxHTkiM9xu/CmNSvN/8HYGNppbN51D7wzQv7Et+w8dfpzjR7mI/cj+v7J+xzHT+ONW/NM2JOimGizpczivHSyfGPpw4DpkeP8wKGb77BIwzPd4lOTMOnRkMGZ0ALXljPNaJ/HFCyDJfx8mJ+t2BCsmJujg+zmf8hH8njpdZDgxFOxGnV9rwpsX7ze9HTvDKvR2cOLbFOZBHTmxO03cTcyJGj+xGjnCi3ozzObBvGk0tW+WatT1xHHKmXFru3+8diM8LE6AlZ/7Hcmoc2vw5L0aTi2mx2oaVnGkjxTKnxk5jdf+MVVTv7md+TNIb7WKnzo31wni5E5zYmk6M+zixPavXqms0Pa+M6zvBifxxIk2v9LGc+O1eOa57JU4p+4IPKDn3n7UNAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKYwCRoAAAAAAAAAAAAAAAAAAAAAAAAAAACAqzAJGgAAAAAAAAAAAAAAAAAAAAAAAAAAAICrMAkaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKswCRoAAAAAAAAAAAAAAAAAAAAAAAAAAACAqzAJGgAAAAAAAAAAAAAAAAAAAAAAAAAAAICrMAkaAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKswCRoAAAAAAAAAAAAAAAAAAAAAAAAAAACAqzAJGqWaL9oBAIgIr5R1v898pE78dkuSZVkOpOxuIcuZ3206TSf2IyfSdEK832d8n0+K98tvOFHLsozme3ycX6azyO/3m69A4uJlPFArJBkuQ1YwS1YoZDTNUMhsnkvmN6Uk+ePM57tlWcbzyDSfAxszKyuokOH9yAkeqd6VkRVSKGR2PwpkhRQ0nKYj7S6H2h+meWFfChk+/jrFiXYX+5H7eWX/jGWm88ep/qVpXhmnAEzwyvHSibEPJ45DpscP4/1+6g+XMz3eJTkzDp0Q5zf+57cXxmOdyB8n+H3m6zg5Ub87UCE5URdnBS2FTJdLB7ZnvAND0U7E6ZU2vGlZIfP7kROcGON1ghPHtqADeeTE5oyPM9uecyJGj+xGjnCi3gxaDuybRlPLFu9A+8OJ7elMufS5f793e3wOcuJ/LKfGoc2f82I0uZgWq21YyZk2Uixzauw0VvfPWEX17n7mxyS90S526txYL4yXO8GJrenEuI8T29N839Ib4/pOcCJ/nEjTK30sL+zvTvFKnJIU5/pBGm/wWbFacyJMUlKSMjIy8ryfmJioQCAQhYjMsazsit1sonKgJUOark2PNJ2ZMGVYdppmAw1ZlvHOVTAUMj5XzApZxv8lsCzLaOffcmBbOpFmnM+nuDgHTgI3vR8FLYUMH92CQct8WQ9Z8hneN9MzgwoaLkRH0rOUZfgPxqBlKSkuzlh6x9Kz5DOc5+mBTMUb3jcD6ceV6DM/kTEpKdFompnyq0yZJKNpBkOWkhLjjaaZkRVUQpzZU3ePp2cq3nC5zMwKKTHB3P4uZU+KTYw399sDmUGj6UmS5fMppUyC0TQzg5YSDB+HMrJCSjCc5xnBkBIN75v+OJ/KGi5DSfF+pRjeN51od8mS/IbTDFkhmT61KxSyjP7jFDLc3swR50C72Ik+gRMdNycmUpj+7ab3I8mZfcmJNH0+s/un5cBu5ETd4ZW+oCwZ77v4fJbifGaPlzE9TuFA/9J0ml6IMdbTdKLd5USdlBEMyvAwhWTJeP/Ssiyj2zOQZf53B0MhxfnN/u5YTtOyLMWb3o9C5tvwaVlB8xfaCoaMn5yQnhWUyeliwZClpASz+ePEOEV6Zsh4tzorZBkfp8jICine8G8PWVKy4Tzy+WR87CNkWYo3XH8czwzKdAcmGDK/f1oyuy9lhSzjY7FOpOn3+ZRkuAw5MYSWFTL/P1YoZLY9IzlzbIvzS4nxhst6yDJ+Hk16VpaCBq8dmhkMGd+WmSHzYz7eacuFjNfvPp9PiaZ/uxUy3scKZJn+Z92Z7enE/nk8I0uWZS7NzFBICYZ/d0YwZP6/y2DIeB/YiTQT43xKTTb735hlyfi+acky3h/KDFqS4fMKgpb5OE2n6USMkoyXy2DIgXFoB3673+/EeJcD1/73SJo+mW/HSubPmTM/acgy/99YLKfpwDm8Xvmv0Yn/8JyIMytouG3sxPkuoZDxSi4raP7PdSfaSJYj5w850A+2LOMXI3Vi3MeJMRrjfVZLxvtDTozLOXK6nEP/25pO0ycZ/29MThwzHDpvzAtzc5y4WKzptnacz2f8P6fSoDjzWJkEDUmlexI0AAAAAAAAAAAAAAAAAAAAAAAAAAAAoqc481jNXkouxo0aNUqPPPKIJGnw4MGaMGFCkdMIhUIaMGCAgsFgiWKpXbu2nn/++RKlAQAAAAAAAAAAAAAAAAAAAAAAAAAAAEQDk6AN2bBhg0aNGmUknSlTppQ4ncaNG5c4DQAAAAAAAAAAAAAAAAAAAAAAAAAAACAa/NEOoDQ4cuSI+vbtq2PHjpU4rRUrVhiICAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAuJkGXUHp6unr16qUffvjBSHorV640kg4AAAAAAAAAAAAAAAAAAAAAAAAAAADgVUyCLoGjR4/qyiuv1Lx584yleeIk6CeeeEKWZRX5sWbNGmMxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAJHEJOhiWrt2rdq0aaP58+cbTffESdAtWrQwmj4AAAAAAAAAAAAAAAAAAAAAAAAAAADgdvHRDsCL3n77bd1+++1KS0szmu7OnTu1b9++sPeYBA0AcLPt27dr//790Q7jlCpXrqzatWtHO4xSwYk8J3+A2BDL9YdXfrtX4gRMiNX93Su/m36G+5FHMMEr+xHczSvHIeojs6g/zGL/jD3Uc0DJeOU4FMvtJNNxUsfFplgu64g9sVq/S5ShWMR+ZJZXtqdXjuumsW/GXp47xfS+5JX88Up9FMtlHYgl1B9AyVCGSgkLhbZ+/XqrR48elqRTPgYPHlzk9D/++OOwNKpVq2b+RxQgMTEx39+RmJgYsRgAILddu3ZZw4cPt3bt2kWaLk1z27ZtVkpKSqGOi9F+pKSkWNu2bTP2253YnqZ5Kc+9kD+kSZpuTM9LacZy/eGV3+6FOL2yv5Om+9P0wv5uWeZ/u1d+N/2M2C1DsZhHXsnzWN+PeLj74ZXjkNvrIy+lSf3h7nLklf0oltOknnN3ml6IMdbT9NJxKFbbSU7ESR0Xe2nGclnn2BZ7acZy/U4Zir00Y3U/cipNr2xPLx3X3b4tvXC+nGXFdp57YV/yUv54pT7yQlknTXen6YUYYz1N6g93p+mFGGM9Ta+UoVhTnHmsPsuyLOGk9u7dq5EjR+rNN99UVlZWns/vuusurVixQosXL7bfGzx4sCZMmFCk73niiSf06KOP2q+vuOIKffbZZ8WOuyiSkpKUkZGR5/3ExEQFAoGIxAAAuX3//fdq1aqVli9frpYtW5Kmi9McPXq0zjrrLCNpOmHz5s166KGHXL89TfNKnnslf0iTNE2k6YUYnU4zlusPr/x2N8fptf2dNN2fppv3d8m545BXfjf9DPenSR5xbDORptv3I7ibV45DXqiPvJgm9YcZ9NtiN03qOXem6YUYSdMbxyHaSebipI6L7TRjuaxzbIu9NGOtfpcoQ7GcZqztR06n6ZXt6fbjumle2TedEKt57hSnxg/dnj9eqY+8UtZJ091peiFG0qT+cHOaXoiRNL1RhmJNceaxxjsdVGkwatQovfrqq3neT01N1YsvvqghQ4aoQ4cOJf6eFStWhL1u0aJFidMEAMBpZ511ls4999xoh4EIIs8BFFcs1x9e+e1eiRMwIVb3d6/8bq/EGcvII5jAfgS3Yt90P/IIKBnKEFAysVyGvPLbvRIn3I39CLHEK/u7V+KEu7EfmeWV7emVOGEOee5usZw/sfzbAZQM9QdQMpQh72MSdDF1795dr7/+umrVqmUszZUrV4a9ZhI0AAAAAAAAAAAAAAAAAAAAAAAAAAAAYpE/2gF4TZMmTfTxxx/rk08+MToB+vDhw9qyZUvYe0yCBgAAAAAAAAAAAAAAAAAAAAAAAAAAQCziTtCF1Lp1a919990aMGCA/H7zc8dXrlwpy7Ls16mpqapfv75CoZA+++wzffTRR/r666+1Y8cOHTt2TJUrV1bNmjV12WWXqUePHmrXrp3xmAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBoYBJ0IQwbNkyVKlVy9DtWrlwZ9rpZs2aaNGmSHn30UW3bti3P8rt27dKuXbu0bNkyPf3007rsssv07LPPqmXLlo7GCQAAAAAAAAAAAAAAAAAAAAAAAAAAADjN/C2NSyGnJ0BL0ooVK8Jef/3117r++uvznQCdny+++EIXXHCBxo0b50R4AAAAAAAAAAAAAAAAAAAAAAAAAAAAQMRwJ2iXOPFO0MFgMOz1mWeeqbp166pixYrat2+fVq9erePHj4ctk5mZqRtvvFG//fab7r//fqdDBgAAAAAAAAAAAAAAAAAAAAAAAAAAABzBJGgXyMzM1I8//pjvZwMHDtTf/vY3tWnTJuz99PR0ffzxxxo2bJjWr18f9tk//vEPNWnSRFdcccUpvzsQCCgQCBQ/eABAzNu8eXO0Qzgpt8fnRSa3KfkDxJZYrj+88tu9EidgQqzu71753W7fpm6PLxLcvg3cHh+ykU8oCa8ch9jPncF2NYPtGLuo54CScft+TzvJXNpuz2s4y+357/b44C2xVr+bTgvewn5klle2Z6zlVaz93vywDcxwaju6PX+8Uh+5fTsCMIv6AygZypD3MQnaBdauXauMjIyw91JTUzVx4kT16tUr33WSk5PVt29fXX311Ro8eLCmTJlifxYKhTR06FBt3rxZycnJJ/3u0aNHa+TIkSX/EQBg2BlnnKHhw4frjDPOIE2Xplm5cmWlpKTooYceMpamU1JSUlS5cmVj6TmxPU3zUp57IX9IkzTdmJ6X0ozl+sMrv90LcXplfydN96fphf1dMv/bvfK76WfEbhlygtvzyCt5Huv7EdzNK8cht9dHXkqT+sM8+m2xlSb1nLvT9EKMsZ6ml45DsdpOciJO6rjYSzOWyzrHtthLM5brd4kyFGtpxup+5FSaXtmeXjqum+aFfdMJsZznTjG5L3kpf7xSH3mhrJOmu9P0Qoyxnib1h7vT9EKMsZ6mV8oQTs1nWZYV7SBKgw4dOmjhwoX268GDB2vChAmFWnfx4sV64IEHtHnzZu3du1d+v18ffvihrrrqqkKtHwwG1bFjRy1atCjs/eeff1733HPPSdfNuRN0lSpV8kzElqTExETuFA0AKND27du1f//+aIdxSpUrV1bt2rWjHUap4ESekz9AbIjl+sMrv90rcQImxOr+7pXfTT/D/cgjmOCV/Qju5pXjEPWRWdQfZrF/xh7qOaBkvHIciuV2kuk4qeNiUyyXdcSeWK3fJcpQLGI/Mssr29Mrx3XT2DdjL8+dYnpf8kr+eKU+iuWyDsQS6g+gZChD7pOUlFTkeaxMgjakJJOgczt27Jj27t2revXqFWm9TZs2qWHDhgoGg/Z7jRs31po1awq1fnF2HgAAAAAAAAAAAAAAAAAAAAAAAAAAAOBUijOP1e90UCiasmXLFnkCtCTVr19fV199ddh7a9eu1a5du0yFBgAAAAAAAAAAAAAAAAAAAAAAAAAAAEQEk6BLkS5duuR579tvv41CJAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDxMQm6FGnatGme9/bs2ROFSAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDiYxJ0KXL66afnee/AgQNRiAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAoPiZBlyLBYDDPe2XLlo1CJAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDxMQnahbKysoq1Xn53fa5cuXJJwwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAiiknQUbZ371516dJFzZs3V40aNZSYmKiHH364WGmtXr06z3sNGzYsaYgAAAAAAAAAAAAAAAAAAAAAAAAAAABARMVHO4BYd/rpp2vRokUKBAL2e0uWLClWWvPnzw97Xa5cObVo0aJE8QEAAAAAAAAAAAAAAAAAAAAAAAAAAACRxp2goywuLk7NmjULe2/JkiXavn17kdLZtm2bPv7447D3unXrpri4uBLHCAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQSk6Bd4Nprrw17bVmWRo0aVaQ07r33XmVlZYW997e//a3EsQEAAAAAAAAAAAAAAAAAAAAAAAAAAACRxiRoF7juuuuUkpIS9t5bb72lTz75pFDrjx49Wh988EHYex07dtTFF19sLEYAAAAAAAAAAAAAAAAAAAAAAAAAAAAgUpgE7QLVqlXTI488EvZeMBhUv3799Pbbbxe43rFjx/S3v/1NDz/8cNj7ZcuW1VtvveVIrAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDT4qMdALLdf//9mjNnjhYuXGi/l5aWpsGDB+uVV17RwIED1aJFC6WkpOjXX3/VggULNGnSJO3evTssHZ/Pp7feekv16tWL9E8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAjGAStEskJibqww8/VKdOnfTdd9+Fffbtt9/q22+/PWUafr9fr732mvr37+9UmAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDj/NEOAH+oUKGCvvzyS91xxx1FXrdWrVqaO3eubrnlFgciAwAAAAAAAAAAAAAAAAAAAAAAAAAAACKHSdAuk5ycrH//+99avXq1Bg0apNTU1JMu36hRI73wwgv66aef1LFjxwhFCQAAAAAAAAAAAAAAAAAAAAAAAAAAADjHZ1mWFe0gULCsrCx9//33Wr9+vQ4cOKBjx46pbNmyqlOnjlq1aqU6deoY+Z6kpCRlZGTkeT8xMVGBQMDIdwAAAAAAAAAAAAAAAAAAAAAAAAAAACD2FGceK5OgIYlJ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAHBGceax+p0OCgAAAAAAAAAAAAAAAAAAAAAAAAAAAACKIj7aAQAAAAAAAAAAAACliWVZea5QnJSUJJ/PF6WIAAAAAAAAAAAAAAAAvIdJ0AAAAAAAAAAAAIBBgUBAM2bMCHuvV69eSk5OjlJEAAAAAAAAAAAAAAAA3sMkaAAAAAAAAAAAAAAAAACIcZZlKRAIhL2XlJQkn88XpYgAAAAAAAAAALGOSdAAAAAAAAAAAAAAAAAAEOMCgYBmzJgR9l6vXr2UnJwcpYgAAAAAAAAAALHOH+0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3JkEDAAAAAAAAAAAAAAAAAAAAAAAAAAAAcJX4aAcAAAAAAAAAAAAAAAAAAG5gWZYCgUDYe0lJSfL5fFGKCAAAAAAAAACA2MUkaAAAAAAAAAAAAAAAAACQFAgENGPGjLD3evXqpeTk5ChFBAAAAAAAAABA7IroJOjffvtNy5Yt0w8//KBt27Zp69at2rdvn9LS0nTs2DH5/X6VK1dOqampqlSpkurXr69zzjlHDRs2VNu2bVW2bNlIhgsAAAAAAAAAAAC4AnckBAAAAAAAAAAAAAAAscbRSdAZGRn64osv9L///U+zZs3S5s2b8yxjWVae9/I7WSMuLk4tW7ZU+/bt1bNnT1144YWOxAwAAAAAAAAA+WHyGQAgmrgjIQAAAHJjnAIAAAAAAAAAEAscmQT9ww8/aOzYsZo0aZIOHTokKf/JzlL+E57zWz4rK0vLli3TsmXL9Oyzz6p27doaMGCAhgwZonPOOcfsDwAAAAAAAACAEzD5DAAAAAAAuAXjFAAAAAAAAACAWOA3mdgnn3yiiy66SM2bN9crr7yigwcPyrIsWZYln8+X5yHJ/vzEh6STLr9t2zY99dRTatSoka6++mrNmzfP5E8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAECVG7gT94Ycf6rHHHtPKlSslKWzSc87r3Hd2jo+PV82aNVW1alVVqVJFKSkpSkpKkmVZSktLU1pamg4cOKBffvlF+/bty3NX6BPT/fTTT/Xpp5+qVatWevzxx9W1a1cTPwsAAAAAAAAAAAAAAAAAAAAAAAAAAABAFJRoEvTatWt11113aeHChZLCJz/nTFwuU6aMLrnkErVt21atWrVS48aNVa9ePcXFxRXqOzIyMvTTTz9pxYoVWrlypZYsWaLvvvtOwWBQUviE6O+++07du3dXu3bt9MILL6h169Yl+XkAAAAAAAAAAAAAAAAAAAAAAAAxwbIsBQKBsPeSkpLseRsAvI9yDgDwmmJNgj527JgefvhhvfbaawoGg/bkZyn7YHj22Werd+/e6ty5sy6++GIlJiYWO8DExEQ1adJETZo00aBBgyRJhw8f1vz58/Xxxx9rxowZOnjwoCTZk6+/+uorXXDBBbrllls0atQoVaxYsdjfDwAAAAAAAAAAAAAAAAAAAAAAUNoFAgHNmDEj7L1evXopOTk5ShEBMI1yDgDwmiJPgl60aJGGDBmirVu3hk1+Llu2rPr27ashQ4bo4osvNh5obuXLl1fPnj3Vs2dPvf7665o1a5bGjRun//3vfwoGg/L5fAqFQnrjjTc0Y8YMTZgwQV27dnU0JgAAAAAAAAAAAMSeESNGFGq5MWPGlDgNAAAAAAAAAAAAAACAWOIvysL33XefOnbsqK1bt9rvVa1aVU8//bR27typ//znP45PgD5RQkKCrr76as2YMUNbtmzRQw89pEqVKtmf79mzR927d9fdd98d0bgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFE+RJkG/8MILsixLlmWpYsWKevrpp7V582bdf//9Sk1NdSrGQjvzzDP15JNPauvWrRo1apROP/10SZJlWXr55ZejHB0AAAAAAAAAAAAAAAAAAAAAAAAAAACAwijSJGhJSkpK0t///nd78nOZMmWciKtEypYtqwcffFBbt27V8OHDlZKSEu2QAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRSkSZB/+Uvf9H69es1ZswYVahQwamYjElJSdHw4cO1fv16XXfdddEOBwAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhxBdl4UmTJjkVh6POPPNMvf3229EOAwAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhFOlO0AAAAAAAAAAAAAAAAAAAAAAAAAAAAADgNCZBAwAAAAAAAAAAAAAAAAAAAAAAAAAAAHCV+GgHAAAAAAAAAAAAAAAAAAAAAAAAAMD7LMtSIBAIey8pKUk+ny9KEQEAAC9z3STov//973r66aejHQYAAAAAAAAAAAAAAAAAAAAAAECpM2LEiEIvO2bMmBKngdgSCAQ0Y8aMsPd69eql5OTkKEUEAAC8zB/tAE707LPPatCgQcrKyop2KAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiwHWToCXp3Xff1ZVXXqljx45FOxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEea6SdAJCQmSpM8//1zt27fX3r17i53WBx98YCosAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHiuknQH3/8scqVKydJ+v7773XRRRdp06ZNRUrj888/V9u2bdW3b18nQgQAAAAAAAAAAAAAAAAAAAAAAAAAAADgINdNgu7SpYsWLFig6tWry+fzadOmTWrXrp2+++67U667dOlSXX755eratWuhlgcAAAAAAAAAAAAAAAAAAAAAAAAAAADgPq6bBC1JLVq00JIlS9SgQQNJ0r59+3TZZZdp1qxZ+S6/du1a9erVS+3atdOCBQsiGCkAAAAAAAAAAAAAAAAAAAAAAAAAAAAA01w5CVqS6tSpoyVLluiiiy6SJB07dkw9evTQxIkT7WW2bt2q66+/Xs2bN9dHH30ky7LsxwUXXKDZs2dHK3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxRQf7QBO5rTTTtPnn3+u6667Th988IEyMzM1dOhQbd68WQcOHNBbb72lzMxMWZZlr9OyZUs99thj6t69exQjBwAAAAAAAAAAAAAApY1lWQoEAmHvJSUlyefzRSkiAAAAAAAAAAAAoPRy9SRoKfvPwqlTp+ruu+/Wyy+/LMuy9MQTT0hS2OTnpk2basSIEerZs2eUIgUAAAAAAAAAAABKbsSIEYVabsyYMSVOAwBQNIFAQDNmzAh7r1evXkpOTo5SRABiAe1DAAAAAAAAAECscv0kaEkKhUI699xzVaZMGaWnp9uTn30+nxo1aqThw4erb9++UY4SAAAAAAAAABBN3JUPAAAAAAAAAAAAAAAAAEoPV0+CDoVCmjBhgp544glt27Yt7LOck9Y6d+7MBGgAAAAAAAAARpX0DkvcXSk6uCsfAAAAAAAAAAAAAAAAAJQe/mgHkB/LsvT222+rYcOGuvnmm7V161ZZliXLslS+fHn17NnTvhv0Sy+9pAEDBigzMzPKUQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAwwXWToN999101atRIQ4YM0ebNm+33y5QpowceeECbN2/WBx98oJdeesm+G/SUKVPUtWtXHTp0KFphAwAAAAAAAAAAAAAAAAAAAAAAAAAAADDEdZOgBw4cqI0bN0rKviN0XFycbrnlFv3888966qmndNppp0mS7rzzTr3//vtKSkqSJC1cuFCXXHKJdu3aFbXYAQAAAAAAAAAAAAAAAAAAAAAAAAAAAJSc6yZBS9mTnyWpf//+WrdunV5//XWdccYZeZbr3bu3Zs+erYoVK0qS1qxZowsuuEBr166NZLgAAAAAAAAAAADwKMuylJ6eHvbI+a8KAAAAAAAAAAATGIsGAAAAiic+2gHkp3v37nryySfVrFmzUy57ySWX6Msvv9QVV1yhnTt3aseOHbr44os1c+ZMtW/fPgLRAgAAAAAAAAAAwKsCgYBmzJgR9l6vXr2UnJwcpYgAAAAAAAAAAKUNY9EAAABA8bhuEvSiRYt08cUXF2mdc889V19//bWuuOIKrV27VocOHdIVV1yhCRMm6Nprr3UoUgAAAAAAAAAAAAAAAAAAAAAAACA2jRgxolDLjRkzpkTrAwCA2OWPdgAnKuoE6Bw1a9bUV199pUsvvVRS9pWSrrvuOpOhAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIgA102CLony5ctrzpw56tOnjyTJsqwoRwQAAAAAAAAAAAAAAAAAAAAAAAAAAACgqErVJGhJSkxM1Pvvv6+//e1v0Q4FAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDHERzsAJ/h8Pv3rX/9SzZo1ox0KAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCIqlZOgczzwwAPRDgEAAAAAAAAAAAAAAACAC40YMaJQy40ZM6bEaQAAAAAAAAAAgKJz9SToHTt26PXXX9f8+fO1bds2HT16VBUqVFDNmjXVsGFDTZgwIdohAgAAAAAAAAAAAAAAAAAAAAAAFOlCSQVdcImLLQEAAAB/cO0k6H/961968MEHlZmZab9nWZaOHDmiHTt26Ntvv2USNAAAAAAAAAAAAAAAAAAAAAAAAAAAAFAKuXIS9NNPP62HHnpIlmUVed3nnntOdevWVfPmzVW/fn0HogMAAAAAAAAAAAAAAAAAAAAAAAAAAADgJH+0AzjRxo0b9cgjj9ivmzZtqsmTJ2vTpk3auXOnLr744pOuf/jwYfXr108NGjTQJ5984nS4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxz3STol19+WcFgUJJ02WWXaenSpRowYIDq1aunM844Q2XLlj3p+rfeeqv9/L///a+jsQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAwz3WToOfPny9J8vl8euONN5SUlFSk9WvUqKHzzz9flmXp888/dyJEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5y3SToX375RT6fTw0bNtTZZ59drDQuuugiSdK+ffv0888/mwwPAAAAAAAAAAAAAAAAAAAAAAAAAAAAgMNcNwk6MzNTUvYdnYuradOm9vP169eXOCYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkeO6SdDVqlWTJB06dKjYaVStWtV+/ssvv5Q4JgAAAAAAAAAAAAAAAAAAAAAAAAAAAACR47pJ0H/6059kWZbWrFmjQCBQrDRSU1Pt54cPHzYVGgAAAAAAAAAAAAAAAAAAAAAAAAAAAIAIiI92ACfq2rWrZs+erUAgoMmTJ2vo0KFFTuPYsWMORAYAAAAAAAAAAAAvGzFiRKGWGzNmTInTAAAAAAAAAAAAAAAAQMm47k7Q/fv3V3JysiTp4Ycf1r59+4qcxvr16+3nFSpUMBYbAAAAAAAAAAAAAAAAAAAAAAAovSzLUnp6etjDsqxohwUAAADEJNdNgq5evbpuvfVWWZalffv26YorrtDevXuLlMb06dPt5+ecc47pEAEAAAAAAAAAAAAAAAAAAAAAQCkUCAQ0Y8aMsEcgEIh2WAAAAEBMct0kaEkaPXq0mjZtKsuytHLlSrVs2VLTpk0r1LpTpkzRokWLJEkJCQk6//zznQwVAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGHx0Q4gP8nJyfr444/VqVMnbdy4Ubt27dK1116rhg0bKi0tLd91jh07pldeeUXDhg2TJPl8PvXu3VvlypWLWNyjRo3SI488IkkaPHiwJkyYUOI0582bp2nTpunrr7/Wjh07dOjQISUnJ6tWrVpq1aqVevbsqR49eig+3pVZCQAAAAAAAADGjRgxotDLjhkzpsRpAAAAAAAAAAAgSZZl5bkbbFJSknw+X5QiAgAAAACgdHPtzNlatWrp66+/1sCBAzVr1ixZlqUNGzaELXPOOeeoatWqOnr0qDZs2KDMzExZliVJKlu2rB577LGIxbthwwaNGjXKWHrLly/XTTfdpJUrV+b57OjRo1q3bp3WrVunSZMmqV69evr3v/+t7t27G/t+AAAAAAAAAAAAAAAAAAAAAH8IBAKaMWNG2Hu9evVScnJylCICAAAAAKB080c7gJOpVKmSPv30U/3nP/9RjRo1ZFmWLMuyr5a2efNmffPNN1qzZo0yMjLs9cqUKaN3331X9evXj0icR44cUd++fXXs2DEj6U2ePFkXXHBBvhOg87NlyxZdeeWVGjlypJHvBwAAAAAAAAAAAAAAAAAAAAAAAAAAAKLJ1ZOgcwwZMkRbtmzRxIkTdcUVV6hMmTL2hOichyT5/X5dddVVWrp0qa666qqIxJaenq5evXrphx9+MJLeBx98oOuvv15ZWVlh7ycmJqpt27a66qqr1Lp1ayUmJuZZd8SIEXr22WeNxAEAAAAAAAAAAAAAAAAAAAAAAAAAAABES3y0AyishIQEDRo0SIMGDVJWVpbWrVunLVu26NChQ4qPj1eVKlXUpk0bVahQIWIxHT16VD169ND8+fONpLdlyxYNGTJEoVDIfi8uLk4PPvig7r33XlWqVMl+f9++fXruuef0zDPPhC3/0EMPqUOHDmrdurWRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBI88wk6Nzi4+N13nnn6bzzzotaDGvXrlWfPn20fv16Y2nef//9Onz4sP3a7/dr6tSp6tWrV55lq1SpojFjxqhdu3bq3bu3feforKws/eMf/9C8efOMxQUAAAAAAAAAAAAAAAAAAAAAAAAAAABEkj/aARRXMBjUiBEjovLdb7/9ttq2bWt0AvSKFSv0wQcfhL33yCOP5DsBOrc///nPev7558Pemz9/vrG7UwMAAAAAAAAAAAAAAAAAAAAAAAAAAACR5tgk6ClTpjiVtFatWqVWrVrp8ccfd+w78rNhwwb17NlTgwcPVlpamtG0X3vttbDXp512mh588MFCrXvnnXeqWbNmYe+9+uqrxmIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAIsmxSdCDBg3Shx9+aDTNYDCokSNHqm3btlq9erXRtE9m7969uuOOO9SkSZN8f9Ndd92liy++uNjpB4NBTZ06Ney96667TikpKYVa3+fz6bbbbgt777PPPjM+URsAAAAAAAAAAAAAAAAAAAAAAAAAAACIhHinEs7MzNS1116rGTNmqFu3biVOb/Xq1brhhhu0atUqWZZlIMLCGzVqVL53Vk5NTdWLL76oIUOGqEOHDsVO/9tvv9XBgwfD3rv66quLlMbVV1+t22+/3X6dlpamzz77TL179y52XAAAAAAAAAAAAAAAAAAAAAAAlEYjRowo9LJjxowpcRoAAAAAis6xO0FLUkZGhnr37q3PP/+82GkEg0E99thjatu2rT0B2ufzGYyyeLp37661a9dqyJAhJU5r8eLFYa/9fr8uvPDCIqVRs2ZN1a5dO+y9BQsWlDQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAIOIcnQTt8/mUnp6unj17atGiRUVef/Xq1WrTpo1GjhypjIyMPBOg69evbzLcQmnSpIk+/vhjffLJJ6pVq5aRNNeuXRv2+qyzzlJqamqR0znvvPPCXi9fvrxEcQEAAAAAAAAAAAAAAAAAAAAAAAAAAADR4Ngk6Li4OEnZE6HT0tJ01VVX6euvvy7UusFgUI8//nieuz/7fD5ZliW/36/7779fq1evdir8PFq3bq1JkyZp1apVuuqqq4ymvW7durDXDRo0KFY6Z599dtjrn3/+udgxAQAAAAAAAAAAAAAAAAAAAAAAAAAAANES71TCb7/9tq6//nqFQiH5fD4dPXpU3bp10+eff67WrVsXuN4PP/ygG264QStXrpRlWZJk3/3Zsiw1a9ZM//nPf9SyZUunQs9j2LBhqlSpkmPp79q1K+x1zZo1i5XOGWecEfZ63759SktLU0pKSrFjAwAAAAAAAAAAAAAAAAAAAAAAAAAAACLNsTtBDxgwQO+++27YHaEPHz6srl27atWqVXmWz7n7c5s2bewJ0Lnv/pyYmKgnn3xS3333XUQnQEtydAK0JO3duzfsdbVq1YqVTpUqVfK8d+DAgWKlBQAAAAAAAAAAAAAAAAAAAAAAAAAAAESLY5OgJalv37567733FB+ffcNpn8+n33//XZ06ddLatWvt5X744Qe1bdtWI0aMUEZGhj0BWsq++/Mll1yiVatW6aGHHrInVZcWR44cUUZGRth75cuXL1Zaqamped77/fffi5UWAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC3xTn/BNddco6lTp6pfv37KzMyUz+fTgQMH1KlTJ82dO1czZ87UE088oczMzDyTn8uXL6+nnnpKt956q9NhRk0gEMjzXkpKSrHSym+99PT0U35/fjHkduTIEcXHx6tMmTIKhUI6duxYnmVyJmCnpaUpGAyGfZacnKyEhARlZGTk+a64uDilpKTIsiwdPXo0T7ply5aV3+/X8ePHlZWVFfZZUlKSEhMTlZmZmed3+v1+lS1b1o7/RCkpKYqLi1N6eroyMzPDPktMTFRSUpKysrJ0/PjxsM98Pp/KlSsnSTp69Kgsywr7vEyZMoqPj1cgEMgzuT0hIUHJyckKBoNKS0vLE1PONjx27JhCoVDYZyfbhqfKm3Llysnn8+WbNyfbhjl5I+W/DU+WNyfbhrnzJr9tmJM3Rd2GufMmv22Ykzemt2FO3pxsG5Zk/y7JNjzZ/l2SbZhf3lBHZKOO+AN1RDbqiGzUEdmoI/5AHZGNOiIbdUQ26og/UEdko47IRh2RjTriD9GoI4rryJEj1BH/n1N1hAnUEdQREu2I3EpTHXGqbVhSBW3D4jp27NhJ64jiOHLkCHVELtQR2agjstHXyEYd8Yei1BGBQCBsmZyLwlNHUEdI1BE5vFZHmBDJdkRxFeb8n5w6LRgM2vEePXpUmZmZ1BG5thF1RGzVEfQ1/kA7Iht1RLZYriNy9wl8Pp99cyfqCOoIiToih9fqCBNM9zUCgYDjdYQJOfsGdUS2WK0jSip3HePGOqI09jWk8L5/zrI524J2BHVEDtoR2WKtjqCvQR2Rw6k6ojgcnwQtSX/+8581ffp09enTRxkZGfL5fNqzZ4+aN28uy7LszM49Afrqq6/Wa6+9pho1akQixKjJrxOV84dCUeV3l+wTC8uJRo8erZEjRxb4uWVZWr58uapVq6ZGjRopEAho+fLleZbr0KGDJGn9+vU6fPhw2GeNGjVStWrVtG/fPm3cuDHss9NOO03NmjVTMBjMN9127dopMTFRP//8sw4cOBD2Wf369VWrVi39/vvv+vHHH8M+K1eunFq3bi1J+v777/NUKG3atFHZsmW1bds27d69O+yz2rVr66yzztLRo0e1cuXKsM+SkpJ04YUXSsq+g/mJ+de8eXNVrFhRO3fu1Pbt28M+O+OMM9SwYUOlp6fn+a0+n0/t27eXJK1bty5PxXDuueeqatWq2rNnjzZt2hT22emnn67zzjtPWVlZ+W7Diy++WPHx8dq4cWOeO4Ofc845qlmzpn777TetW7cu7LPy5curZcuWkpRvuueff77KlCmjrVu3as+ePWGf1a1bV3Xr1tXhw4e1evXqsM/KlCmj888/X5K0atWqPPtoixYtVKFCBf3yyy/asWNH2Gc1atRQgwYNlJaWliemuLg4XXLJJZKktWvX5jkYNGnSRJUrV9bu3bu1ZcuWsM+qVKmixo0bKzMzM9/feumll8rn8+mnn37SwYMHwz5r2LChzjjjDO3fv18bNmwI+6xixYp2PZdfuhdeeKGSkpK0efNm7du3L+yzevXqqU6dOjp48KDWrFkT9llKSoratm0rSVqxYkWeA1CrVq2Umpqq7du3a9euXWGfnXnmmTr77LN19OhRrVixIuyzhIQEXXTRRZKkNWvW5DlQN23aVJUqVdLu3bu1devWsM+oI7JRR/yBOiIbdUQ26ohs1BF/oI7IRh2RjToiG3XEH6gjslFHZKOOyEYd8Ydo1BHFtXz5cuqI/8+pOsIE6gjqCIl2RG6lqY44VTuipAqqI4pr3bp1YXWECcuXL6eOyIU6Iht1RDb6GtmoI/5QlDoiKyvLLltxcXE67bTTJFFHUEdko47I5rU6woRItiOKa/ny5aesI3LKY87EZ0lauXKl4uPjqSP+P+qIbLFUR9DX+APtiGzUEdliuY7I3SdISEhQhQoVJFFHUEdko47I5rU6wgTTfY3du3c7XkeYkJMP1BHZYrWOKKnccbmxjiiNfY2kpCSlp6eH7aMrV65U7dq1aUeIOiI32hHZYq2OoK9BHZHDqTrixDqhMHxWcdYqplmzZumaa66xK5n8Jj9XrVpVL730kvr16xepsIzo0KGDFi5caL8ePHiwJkyYcMr1tm/frjp16oS9N3bsWN10001FjmHu3Lnq0qVL2HuLFi2yK5H85NwJukqVKvneSSUxMVH79+/33BUBuGrIH7hqSDauGpKNq4Zko474A3VENuqIbNQR2agj/kAdkY06Iht1RDbqiD9QR2SjjshGHZGNOuIPpaGOeO655/J8f1Hcd9991BH/nxN1REnzR5JGjBhBHUEdIYl2RG6lpY6QCt6GpuqP3NvQRJoPPPBAWB1hIs377ruPOiIX6ohs1BHZ6Gtko474Q1HvBP3ZZ5+FxdyrVy9lZWVRR1BHUEf8f16qI0y1D51uR5hqH+beho899liJ08tBHfEH6ohspaWOkOhr5EY7Iht1RLZYriNy9wly7gTdq1evfG9aRB2RjToiG3VENrfVEab6BLm3oYk0H3roIcfriMcff7zEceb0C6gjssVqHTFixIg86RZF7v6l2+oIqXT2NTIzMzVt2rSwz7p166Zy5crRjhB1RG60I7LFWh1BX4M6IodTdUTlypULnMea3w2HpQhPgpayJ+r27NkzLHjLsuTz+TRo0CC98MIL9pWSvaS4k6B3796d527Xr732mm677bYix/Dpp5/qyiuvDHtv6dKl9tUFTiYpKanIOw8AAAAAAABQWpX0j9qSro+TM7F9ySMgNjlRf3glTQCAGenp6ZoxY0bYe7169VJycnKUIgJQEl5pd7mxzUl7EwAQq+gTAKWLG9vaptKIxHfQL4BE/9KLaM8AAKKpOPNY/U4HdaLOnTvr448/VpkyZcLer1Spkh599FFPToAuiaSkpDzv5ZeJhZHfVeTySx8AAAAAAAAAAAAAAAAAAAAAAAAAAABws4hPgpakjh076pNPPrFvy+7z+fTbb7+pU6dO2rFjRzRCipry5cvL5/OFvZff7cELo6Db2wMAAAAAAAAAAAAAAAAAAAAAAAAAAABeEpVJ0JLUvn17zZo1S+XKlZMkWZalbdu26fLLL9eePXuiFVbExcfHq3z58mHvHTx4sFhp5bdetWrVipUWAAAAAAAAAAAAAAAAAAAAAAAAAAAAEC3xRV2hY8eORgOoUKGCjhw5Ip/PJ8uy9PPPP6tNmzY6++yzT7muz+fTvHnzjMYTDTVq1NChQ4fs18WdBH7iesnJyUpNTS1RbAAAAAAAAAAAAAAAAAAAAAAAAAAAAECkFXkS9IIFC+Tz+YwHYlmWPRF6x44d2rlzZ6GWLw3q16+vdevW2a+3b99erHS2bduWJ10AAAAAAAAAAAAAAAAAAAAAAAAAAADAa/zRDkDKvqNzzoTm3M9jRePGjcNeb9iwoVjpnLjeiekCAAAAAPKyLEvp6elhD8uyoh0WAAAAAAAAAAAAAAAAAAAAAMS0It8JWhIngxvWpk2bsNe7d+/Wrl27VKNGjUKnkZmZqVWrVoW917JlSyPxAQAAAHAXy7IUCATC3ktKSoq5C0qZEggENGPGjLD3evXqpeTk5ChFBAAAAAAAAAAAAAAAAAAAAAAo8iTowYMHOxFHTLv00kvl9/sVCoXs9+bNm6dBgwYVOo0vv/wyzySITp06GYsRAAAAgHswaRcAAAAAAAAAAAAAAAAAAAAAUNoVeRL0+PHjnYgjplWpUkVt2rTR0qVL7ffee++9Ik2C/u9//xv2+owzzlCLFi2MxQgAAAAAAAAAAAAAAAAAAAAAAAAAAABEij/aASDb9ddfH/b6s88+0/Llywu17pYtWzRp0qSw94YOHSq/n+wFAAAAAAAAAAAAAAAAAAAAAAAAAACA9zBL1iUGDRqkSpUq2a8ty1L//v21f//+k66Xlpamvn37Kj093X6vTJkyuu222xyLFQAAAAAAAAAAAAAAAAAAAAAAAAAAAHASk6BdIjU1VY888kjYez///LM6deqkn3/+Od91du/erW7duuW5Y/Q999yjM88807FYAQAAAAAAAAAAAAAAAAAAAAAAAAAAACfFRzsA/OH//u//NGPGDC1evNh+b9WqVWrWrJkGDRqkK6+8UjVq1NDevXs1b948jRs3Tr///ntYGi1atNCwYcMiHToAAAAAAAAAAAAAAAAAAAAAAAAAlxgxYkShlhszZkyJ0wAAwClFuhP0I488oqNHjzoVi2PS0tL0z3/+M9phnFJcXJw+/PBDtWjRIuz9tLQ0vfHGG/rzn/+s1q1bq3v37nruuefyTICuW7euZsyYoaSkpEiGDQAAAAAAAAAAAAAAAAAAAAAAAAAAABhVpEnQo0eP1jnnnKM33nhDoVDIqZiMmjBhgs455xyNHj062qEUSqVKlfT555/rqquuKtJ67dq105dffqk6deo4FBkAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGUWaBC1Je/fu1V//+lede+65mj59uhMxGfHee++pcePGuvHGG7V79+5oh1MklSpV0scff6yZM2fqkksukd9fcDY1adJEY8eO1ZdffqkzzzwzglECAAAAAAAAAAAAAAAAAAAAAAAAAAAAzogvysK9e/fW9OnT5fP59NNPP6lfv35q2rSphg0bpl69ejkVY6EdP35ckyZN0vPPP6+ffvpJkmRZliSpZ8+ejn73ggULjKfZo0cP9ejRQ3v37tU333yj3bt368CBA0pJSdEZZ5yhtm3bql69esa/FwAAAAAAAAAAAAAAAAAAAAAAAAAAAIimIk2Cnjp1qiZPnqy77rpLBw8elGVZWrVqlfr06aN69eppyJAhuv7661WrVi2n4s3X6tWrNX78eE2cOFGHDh2yJz5LUpkyZfT888/r1ltvjWhMJlWtWlV//vOfox0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBH+oq5w3XXXac2aNfakXJ/PJ8uytHnzZg0bNkz16tVT586d9dprr2nz5s3GA87x/fffa+TIkTr33HPVokULvfTSS/bEbJ/PJ0nq2rWrVq9e7ekJ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAECsKdKdoHPUqFFDM2fO1OzZs3X33Xdrw4YN9sTjUCik+fPna/78+ZJkT4o+//zz1bJlS/3pT39SYmJikb7v8OHDWrlypVauXKmvvvpK8+fP12+//SZJ9l2ffT6fPSG7du3aeuaZZ9SnT5/i/DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUVSsSdA5unbtqh9++EGvvfaannrqKe3atcueDJ0zOXnz5s1688039eabb0rKnqx85plnqm7duqpataqqVKmilJQUJSYmyrIspaWl6fjx4zpw4IB++eUX/fLLL9qzZ0/Y9+aknZNezns1atTQww8/rJtvvlkJCQkl+WkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoqREk6AlKT4+XnfddZduvfVWjR07Vs8884y2b98uSXkmROc83759u3755ZdTpp17vRw5d3zO+dyyLJ177rn629/+puuvv17Jyckl/UkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoshvKqHExETdcccd2rx5sz766CNdffXV8vv99kTmnMnL+U1iLuhx4jo+n8/+LDk5WX379tXs2bO1Zs0a3XLLLUyABgAAAAAAAAAAAAAAAAAAAAAAAAAAAEqBEt8J+kR+v19XXXWVrrrqKu3Zs0cfffSR/ve//2nevHlKS0sLWzZnMnR+ciY751a1alVdeuml6tmzp3r06KGyZcuaDh8AAAAAAAAAAAAAAAAAAAAAAAAAAABAlBmfBJ1btWrVdPPNN+vmm29WMBjUmjVr9O2332rNmjXaunWrtm7dqv379+vYsWNKS0uTz+dTuXLlVK5cOVWqVEn169fXOeeco4YNG+rCCy9Uw4YNnQwXAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAs4Ogk6t7i4ODVr1kzNmjWL1FcCAAAAAAAAAAAAAAAAAIACWJalQCAQ9l5SUpJ8Pl+UIgIAAAAAAACAP0RsEjQAAAAAAAAAAAAAAAAAAHCPQCCgGTNmhL3Xq1cvJScnRykiAACAouGiLgAAAEDpxiRoAAAAAAAAAAAAAAAAAAAAAADgOVzUBQAAACjd/NEOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABy407QAAAAAAAAAEody7IUCATC3ktKSpLP54tSRAAAAAAAAAAAAAAAAAAAoCiYBA0AAAAAAACg1AkEApoxY0bYe7169VJycnKUIgIAAAAAAAAAAAAAAAAAAEXh2CToxx57zJF0/X6/kpKSlJSUpLJly+qMM85QzZo11ahRIyUmJjrynQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAix7FJ0CNGjJDP53Mq+Tzi4+PVvHlz9e/fX0OHDlWFChUi9t0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAzPE7/QWWZUXkkZmZqWXLlun+++9XgwYNNH36dKd/GgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHODoJ2rIs+7nP58v3kZ+Cli3Mw7Is7du3T/369dNLL73k5M8DAAAAAAAAAAAAAAAAAAAAAAAAAAAA4IB4pxK+4447JElZWVmaMGGCMjIy7M9yJkeXLVtW5513nipXrqzy5csrEAjo8OHD2r59uzZu3KhQKCRJeSZL555cnVvuidWWZenee+9VgwYNdMUVVxj/fQAAAAAAAAAAAAAAAAAAAAAAAAAAAACc4dgk6JdffllZWVnq37+/AoGAfZfmlJQU3XDDDbrxxhvVvHnzAu8GnZaWptmzZ+uNN97QnDlz7PWrVq2qBQsWqGHDhkpLS9OhQ4e0c+dOffXVV3rrrbf0448/2pOhQ6GQbrnlFm3YsEFlypRx6qcCAAAAAAAAAAAAAAAAAAAAAAAAAAAAMMjvZOJ33nmnZsyYYU9gbt26tVauXKl///vfatGiRYEToCUpJSVFvXr10qxZszR16lSlpqbK5/Np79696tSpk3799VeVLVtWNWrUUJs2bXT33Xdr9erVeuKJJ8LS2blzp8aNG+fkzwQAAAAAAAAAAAAAAAAAAAAAAAAAAABgkGN3gp43b57efPNNe6Jzq1atNG/ePKWmphY5rd69e6ty5crq2rWrMjMztWvXLt15552aPn162HJ+v18PP/ywsrKyNGLECHvy9bhx43THHXcY+V0AAAAAAAAAAAAAAKB0GzFiRKGXHTNmTInTAAAAAAAAAAAAAJCXY3eCfvzxxyVJlmUpKSlJ//3vf4s1ATpH+/btde+998qyLEnSzJkz9fXXX+e77MMPP6x69erZr1euXKm9e/cW+7sBAAAAAAAAAAAAAAAAAAAAAAAAAAAARI4jk6B37NihL7/8Uj6fTz6fT/3799fZZ59d4nTvuecexcXF2XeXfvfdd/NdLj4+Xv3797cnTEvSqlWrSvz9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAJwX70Siy5Ytsycg+3w+XXXVVUbSrVKlipo2baoVK1ZIkhYuXFjgsm3btg17vXnzZiMxAAAAAAAAAAAAAAAAAAAAACjdRowYUajlxowZU6L1AQAAAABAwRy7E3RuderUMZZ2zZo17ec7d+4scLkaNWpIkn3X6EOHDhmLAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIBzHJkEfezYsbDXx48fdyTt9PT0ApdLSkoKex0MBo3FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA5jkyCPu2008Jer1mzxki6lmXpxx9/tO/uXK1atQKXPfHOz+XLlzcSAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABnOTIJ+txzz5Uke7LyO++8YyTd+fPna8+ePXbaNWvWLHDZtWvXSsqeOC1JVatWNRIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGfFO5Foq1atVKZMGaWnp8uyLH3zzTd65513NGjQoGKnmZmZqfvvv19S9sRmn8+nzp07F7j8Rx99FPa6adOmxf5uAAAAAAAAAO41YsSIQi03ZsyYEqcBAAAAAAAAAAAAAAAAAAAiw5E7QaekpOiaa66xJytblqVbb71Vc+fOLVZ6wWBQ1113nVatWmXfXVqS+vbtm+/yX331lWbPnm0vW7lyZTVs2LBY3w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAgshyZBC1J//znPxUfn32jaZ/Pp/T0dHXv3l0PPfSQDh48WOh0lixZojZt2mj69On2hGqfz6c+ffqoUaNGeZb/9NNP1adPH0l/3DH62muvNfKbAAAA8P/Yu/M4Oco6cfyfnqsnE0KAJAQQUTkFQS5FBDxQUVFYnVVcL2TV70/3UGSXQwGFiEqyrvexoKuACrrrsgyKAq4o4AGrEokgpxoIC4EAIffRc3T9/ogzpjM55nhqumv6/X69eJF+uvsznzr6qaqn6lMFAAAAAAAAAAAAAAAA+WvLK/B+++0X5557bnz0ox+NUqkUpVIpBgYG4pOf/GR84QtfiBNOOCFe+MIXxkEHHRQ77bRTbLfddrFu3bpYtWpVPPDAA7FgwYK47rrr4t57742IvxQ0R0TssMMO8YUvfKHm7916663xpje9KRYvXlzz2fb29nj/+9+f12QCAAAAAAAAAAAAAAAAAACJ5VYEHRFx/vnnx/333x/f+c53hgqhsyyLdevWxZVXXhlXXnnlVr+fZVlERM13d9xxx/jRj34Us2fPrvns/Pnz45FHHhn6/OD/Tz/99Nhnn31ymDoAAAAAAAAAAICty7IsKpVKTVu5XB66xgkAAAAAANi8XIugIyIuv/zy2GOPPeJf//Vfo1qtDg3eDxY4b83GA/1ZlsUBBxwQ//Ef/xEHHnjgsM/ef//9Nd/Jsize/OY3xyc+8YkUkwEAAAAAAAAAADBqlUolenp6atq6u7ujs7OzThkBAAAAAEAxtOT9B0qlUsydOzd+8YtfxEte8pLIsiyyLBt6uvPW/hv87LRp0+KCCy6I22+/fbMF0BERf/jDHyJiQ/HzrFmz4qKLLoorrrgi78kDAAAAAAAAAAAAAAAAAAASy/1J0IOOPPLIuPHGG2PBggXxrW99K370ox/FPffcs8UnQm+33Xbxghe8IN70pjfF2972tujq6tpq/BNOOCFe+9rXxsEHHxxHH310tLTkXt8NAAAAAAAAAAAAAAAAAADkYMKKoAcdcsghccghh8SnP/3pWLlyZdx///2xePHiWL16dbS3t8dOO+0Us2fPjgMOOGBUhcz/+I//mGPWAAAAAAAAAAAAAAAAAADARJnwIuiNbb/99vG85z2vnikAAAAAAAAAAAAAAAAAAAANZuSPWgYAAAAAAAAAAAAAAAAAAJgAiqABAAAAAAAAAAAAAAAAAICG0laPP/rQQw/FzTffHD//+c9j0aJF8dRTT8VTTz0VbW1t0dXVFbNnz44999wzDjnkkDj22GNjn332qUeaAAAAAAAAAAAAAAAAAABAHUxoEfRNN90Uc+fOjRtuuKGmPcuymtelUqnm9WGHHRann356vPnNb849RwAAAAAAAAAAAAAAAAAAoL5aJuKPrF27Nt761rfGy1/+8rjhhhsiy7Kh/yI2FD1v/N/G72dZFvPnz4+3ve1t8fKXvzyWLFkyESkDAAAAAAAAAAAAAAAAAAB1knsR9KOPPhpHHHFE/Od//udQUfPWCp43fX/wqdBZlsWNN94YRx55ZDz44IN5pw0AAAAAAAAAAAAAAAAAANRJW57B161bF3/1V38Vd999d0RETUFzRES5XI6DDjoodt5555g+fXr09/fHihUr4tFHH4177rkn+vv7h31v0aJFcfzxx8evf/3rmDZtWp7pAwAAAAAAAAAAAAAAAAAAdZBrEfSpp54a8+fPrylibm1tjTe96U3x3ve+N174whdGe3v7Zr+7fv36+PnPfx7//u//Hj09PVGtVoeeHH3//ffHmWeeGRdffHGe6QMAAAAAAABMKlmWRaVSqWkrl8tD53QBAAAAAAAAoFHkVgR99913x6WXXlpTAL3nnnvGt7/97TjiiCO2+f3Ozs447rjj4rjjjotbb701Tj755HjggQeGCqG/9rWvxQc+8IHYf//985oEAAAAAAAAgEmlUqlET09PTVt3d3d0dnbWKSOgCNxAAQAAAAAAgHrIrQh67ty5NU9vfuYznxk333xzPO1pTxt1rBe+8IVx8803xzHHHBMPPfRQRGw4wfbZz342vvrVr6ZOHQAAAAAAAACAP3MDBQAAAAAAAOqhJY+g1Wo1rr322qEC6FKpFN/61rfGVAA96GlPe1p861vfGoqXZVlcddVVMTAwkDBzAAAAAAAAAAAAAAAAAACg3nIpgr7tttti2bJlERFRKpXi1a9+dRx99NHjjnvMMcfE8ccfH1mWRUTEsmXL4ne/+9244wIAAAAAAAAAQFFlWRbr16+v+W/w+hoAAGDyc0wAAABMVm15BF24cGFExNBTm//6r/86Wey//uu/juuuu27o9e9///s47LDDksUHAAAAAAAAAIAiqVQq0dPTU9PW3d0dnZ2ddcoIAACYSI4JAACAySqXJ0E//vjjNa/33XffZLH322+/iNjwhOmIiCeeeCJZbAAAAAAAAAAAAAAAAAAAoP5yKYJeu3ZtzeupU6cmi93V1VXzur+/P1lsAAAAAAAAAAAAAAAAAACg/tryCDpjxoya148++miy2I899lhERGRZFqVSKWbOnJksNgAAAAAAAAAAwFjNmTNnRJ+bN2/euGMAAAAAAMBkl8uToHfdddeIiCiVShERcdNNNyWLvWmsnXfeOVlsAAAAAAAAAAAAAAAAAACg/nIpgj7yyCOHCqCzLIvvfOc7sXbt2nHHXbt2bVxxxRVDsSMijjjiiHHHBQAAAAAAAAAAAAAAAAAAGkcuRdAzZ86Mgw8+eOj1o48+Gueee+6445577rnx6KOPDr1+7nOfG7Nnzx53XAAAAAAAAAAAAAAAAAAAoHG05RX47//+7+O9731vlEqlyLIsvvCFL8Suu+4aZ5111pji/cu//Et8/vOfH4pXKpXilFNOSZw1AAAAAAAAAAAAAADQaObMmTOiz82bN29c3wcAABpHbkXQp5xySnzsYx+LRx55ZKhw+eyzz45f/vKX8alPfSr22WefEcW577774swzz4wf/vCHNe1Pe9rT4h/+4R/ySB0AAAAAtinLsqhUKjVt5XI5SqVSnTICgMnP9hcAaHajuWDfRf8AAADAtjj3AgA0utyKoDs6OuIb3/hGHHfccUNPbs6yLH7wgx/ED37wgzj66KPj2GOPjcMOOyx22WWXmD59emRZFitXrozHHnss5s+fHzfeeGPccsstERE1MVpaWuKLX/xidHR05JU+AAAAAGxVpVKJnp6emrbu7u7o7OysU0YAMPnZ/gI0BhdGAkDxuIkCAACwOc69AACNLrci6IiIY489NubOnRsf/OAHo1QqDRUxR0T88pe/jF/+8pfbjDH4+Y1Pln784x+P173udfkkDQAAAAAAAABskQsjAQAAAAAAgImQaxF0RMSZZ54ZM2fOjPe+973R399fU8w8WOC8JYOF04OfbW9vj09+8pPxgQ98INec6+3888+Pu+66a9xxLr300pg2bVqCjAAAAAAAAIAi8aQ/AAAAAAAAAIou9yLoiIh3vvOdcdBBB8U555wTN9xwQ0TUFjhvzWCh9NFHHx2f+cxn4vnPf36uuTaCr3zlK7FkyZJxx7n44osVQQMAAABAk8myLCqVSk1buVwe0XgsAM3FNgMAmAzs0wAAAAAAwOQ1IUXQERHPe97z4n/+53/illtuif/8z/+Mn/70p1t92nGpVIr99tsvXvziF8e73vWuOOKIIyYq1bpavHhxkgJoAAAAAKA5VSqV6OnpqWnr7u6Ozs7OOmUEQKOyzQAAJgP7NAAAAAAAMHlNWBH0oKOOOiqOOuqoiIhYunRpPPzww7F06dJYunRpVKvV2GmnnWLHHXeMPffcM3baaaeJTq/uFixYUO8UAAAAAAAAAAAAAAAAAACgria8CHpjM2bMiBkzZtQzhYazaRH0K17xivjxj39cn2QAAAAAiDlz5oz4s/PmzRt3DABgg5FuP7e0/R1NDAA2z/EQAI0oy7KoVCo1beVyOUqlUp0yAgAAKIbxnnsx1gcA1ENdi6AZ7vbbb695feihh9YpEwAAAAAAAAAAgMZSqVSip6enpq27uzs6OzvrlBEAAAAAAHlpqXcC1Nr0SdCKoAEAAAAAAAAAAAAAAAAAaDaeBN1AVq1aFX/6059q2hRBAwAAQFpZlkWlUqlpK5fLUSqV6pQRAAAAAAAAAAAAALCpURdBv+td78ojjzEplUrx9a9/vd5pJPO73/0usiwbej116tTYd99965gRAAAATD6VSiV6enpq2rq7u6Ozs7NOGQEAAAAAAAAAAAAAmxp1EfRll13WEE9GyrJs0hVB33777TWvn/vc50ZLS0udsgGAYvOER2CymDNnzog+N2/evHHHAAAAAAAAAAAAAACARjHqIuhBGz+xeKJN1uKlBQsW1Lw+9NBD65MIAEwCnvAIAAAAAAA0IzeKBQAAmNzcUB8AgG1xroDJZMxF0PVUzwLsPG36JGhF0AAAAAAAAADj50IPmokbxQIAAAAAQHNzroDJZNRF0C9+8YudCM5Bf39/3H333TVtg0XQt99+e/zHf/xH/OIXv4g//vGPsWzZspg+fXrssssu8YIXvCBOOOGEeO1rXxvt7e31SB0AAAAAAACgobnQAwAAAAAAxm/OnDkNEQOA5jHqIuibbrophzS4++67a+483tbWFitXroyjjz46brnllmGff/LJJ+PJJ5+M3//+9/H1r3899tprr5g7d26cdNJJE5k2AAAAAAAAAAAANL0sy2quAYyIKJfLHjoDAAAAAOMw6iJo8nH77bfXvK5Wq/Gyl71sxN//05/+FG9605vive99b3zpS1+KtjaLFgAAAAAAAACg0SiSA5icKpVK9PT01LR1d3dHZ2dnnTICAAAAgOJTKdsgFixYUPO6Wq3WvN5xxx1jr732il133TWWLVsW9913XzzxxBPD4nzlK1+JxYsXx9VXXx0tLS15pgwAADDhXBwIAAAAAJNDM4/1KZIDgPpo5v0PAAAAgKKqexH0Qw89NKxtjz32qEMm9bXpk6AHHXXUUXHWWWfFCSecEK2trUPtWZbFrbfeGhdccEH86Ec/qvnONddcEx/5yEfiE5/4RK45AzQzJ0Uax5w5c0b82Xnz5o07BgD15eJAAAAAAEbK+ZzGZqwPAJho9j8AAACotxS1C5vGGGnMLdVTjCZGas7lMBJ1L4J+5jOfWbNSlkql6O/vr2NG9fG73/1uWNt5550X559//maf6FwqleKoo46K66+/Pj71qU/FWWedFVmWDb0/d+7cOOmkk+KQQw7Z6t+tVCrDOopNrVq1Ktra2mLKlClRrVZjzZo1wz4zbdq0iIhYu3ZtDAwM1LzX2dkZ7e3t0dvbO+xvtba2RldXV2RZFqtXrx4Wd+rUqdHS0hLr1q0btl6Uy+Xo6OiIvr6+WL9+fc17LS0tMXXq1KH8N9XV1RWtra2xfv366Ovrq3mvo6MjyuVy9Pf3x7p162reK5VKsd1220VExOrVq2vmeUTElClToq2tLSqVSvT29ta8197eHp2dnTEwMBBr164dltPgPFyzZs2wJ4FvbR5ua9lst912USqVNrtstjYPB5dNxObn4daWzdbm4cbLZnPzcHDZjHYebrxsNjcPB5dN6nk4uGy2Ng/Hs36PZx5ubf0ezzzc3LJpxj5izZo1w06KvOY1r4kZM2ZEhD6iHn3EePT39+sjQh8xyH7EX0ymPqLI+xEpDC6HydBHVCqVofWmpaUlWlpaore3d1i+o+kj1qxZU7MuDh6D6SMmbx+xevXqmtiD4xJF7CPsR0z8fsRYrVq1Sh/xZ3n1ESmkPNZYtWrViPqIgYGBWLZsWc17HR0dMW3atDH3ES0tLZFlWc33Vq9eHX19fZOqj0jBscaW+4gsy6KjoyMiNvSz1Wo1Ojo6hrabResjHGtsULT9iBS2NA/Ha0vzcKzWrFmz1T5iLFatWrXNPmLjfeHB9wa3Gc20HzFZ+4gUNp6XjdZHjHY/YuMxhVKpFK2trVGtVje7vhiz3GDKlCnD/tZYbJrzRPYRlUolrrvuuqFlHhFx3HHHRblcrvluXscaAwMDdekjSqXSFo8JxrofMThfNo47GDNibH3E4O+yra1t6G9sHDNi6+v3pz/96RiPOXPm1HU8YtP5NLict9VHpDD4u5ws4xGD61Jra2uUSqUYGBgYti5trZ9NYXPzcDzWr1+/1Xk4Fpte/5Mi3qCJPtYYyTJvpjHLke5HpDC43IvURwyaiGONLZ1zmmzHGkUejxjsPwb3Dwdz2rj/aNY+oghjlhH16SPGo1qtNt14RJH7iEFF248Yq1WrVhWyjxivlPNwY6mPNSqVSu59RAqD64Y+YoNG7CO2NQ9Ha3PXoaWKGTH59iMa4bxGCpuec0oVc5A+YoNG7CMca2xQtGONsdr4+raJPNYYGBiI6667rub8w/HHHz90LkcfUTsPJ0MfMRZ1L4KOiGQX9hfV8uXL45BDDomFCxfGI488EgMDA3HmmWfGRz/60RF9/4wzzohly5bFhRdeONSWZVmcf/758b3vfW+r3507d+5W/06WZTF//vyYPXt27L///lGpVGL+/PnDPvfSl740IiLuvffeWLlyZc17+++/f8yePTueeOKJ+MMf/lDz3o477hgHH3xwDAwMbDbuUUcdFR0dHfHHP/4xli5dWvPeXnvtFU9/+tNj2bJlcffdd9e8t91228Xznve8iIj47W9/O2wde/7znx9Tp06NRYsWxaOPPlrz3h577BF77rlnrF69OhYsWFDzXrlcjhe+8IUREXHnnXcO+3EfcsghscMOO8Qjjzwy7Cnnu+66a+y3336xfv36YdNaKpXiJS95SURE3HPPPcM6hgMOOCB23nnnWLJkSfzpT3+qeW/GjBlx0EEHRX9//2bn4THHHBNtbW3xhz/8YdgFtfvss0887WlPi6eeeiruueeemve23377OOywwyIiNhv3BS94QUyZMiUefPDBWLJkSc17z3zmM+OZz3xmrFy5Mu64446a96ZMmRIveMELImJD8f+mHfqhhx4a06dPj//7v/+Lhx9+uOa93XbbLfbdd99Yu3btsJxaW1vjRS96UURE3HXXXcM2BgceeGDMnDkzHn300XjggQdq3ps1a1Y85znPib6+vs1O64tf/OIolUpx//33x/Lly2ve22+//WLXXXeNJ598Mu67776a93bYYYc45JBDhn5Hm3rhC18Y5XI5Fi5cGE888UTNe8961rPiGc94Rixfvjx+//vf17zX1dUVRxxxRERseIr8phugww8/PKZNmxYPPfRQLF68uOa93XffPfbee+9YvXr1sCfQt7e3x9FHHx0REb///e+Hbaif+9znxk477RSPPvpoPPjggzXvNWMfsWbNmmHrw1133RUvfvGLI0IfUY8+YjyWL1+ujwh9xCD7EX8xmfqIIu9HpDCY22ToI/r7+4fm5bRp06JcLseTTz457Hczmj5iyZIlNctncHBCHzF5+4gHH3ywZpkP3t2/iH2E/YiXRsTE7keM1fz58/URf5ZXH5FCymON+fPnj6iPWL16dXznO9+peW///fePl73sZWPuI5797GdHRNR8b8GCBdHW1jap+ogUHGtsuY8YGBiIxx9/PCI2rEv9/f2x//77DxWoFK2PcKyxQdH2I1LY0n7EeG2pjxire+65p6aPSGH+/Pnb7CP233//iNhQZDPYBw9uM5ppP2Ky9hEpbBy/0fqI0e5HbDymUC6XY9q0aVGpVDZ7s+qRHmvcf//9NdOzww47xOGHHz6p9iNS2HReTGQfMbjc29vbY/r06RHxl35uY3kda6xevboufcRee+0V1Wp1s8cEY92P2Pii1sHvbTwvx9JHDBY977DDDhERsXLlymHLZ2t9RAr1Go9YsGDBsPk/eIHQtvqIFAana7KMRwz+1nfaaacolUqxZs2aYevS1vYjUtjcfsR4PPTQQ1vsI8Zq/vz5NfsRKeINmuhjjcFlvsMOO0RbW1usW7du2DJvpjHLke5HpDCYW5H6iEETcazxyCOP1PTvgwUNk+1Yo8jjEYP9x5QpU2Lq1KnR398/rP9o1j6iCGOW9eojxqNSqTTdeESR+4hBRduPGKv58+cXso8Yr831ESmkPtZ49NFHc+8jUhhcl/URGzRiH7Gt/YjRGoyR8lhj47wm235EI5zXSGH+/Pk1+xGpYg7SR2zQiH3EZDnWyLIsZs6cGfvss0+sWbMmbr/99qGb60VMvmONsZo/f/429yP22WefWLZsWc2yaW1tjba2tjEfawyev9n4vMbGx+r6iA0mUx8xluvjS1mdK5BbWlqGOo0sy4buztms+vr6YtGiRbHnnntu9gnQWzIwMBD77rtvLFy4cKitVCrFY489FjvvvPMWvzf4JOhZs2Zt9kkqHR0d8eSTTxbujgDuGvIXjX5nIXcodNeQovYRq1ev9iToBukjxnuX/4iID3/4w/qI0EcMsh/xF5OhjxhU5P2Ikd4caWtOP/30iJgcfcTg03sGp6elpSVe+9rXDru4e7RPgh6MORj3DW94w9C82Jg+4i+K3EesWrWqZpmXSqV44xvfGO3t7YXrI+xHTMx+RIp9ztNPP10f8Wd59BEpltGmTwAbb8zTTz99RH3E2rVr47//+79r3jv++ONjxowZ43oS9FVXXVXzvcE7pE6WPiLVMnesseU+olKpxI9//OOI+EsxxsZ32i1SHxHhWGNQ0fYjUvzWzzvvvJp5mKr/2Hgepoh55pln1vQRqfY/RvIk6GuuuabmSdCDv/Vm2Y+ImLx9xJw5c4a9N1qDYwoRjddHjOVJ0IPHgoNPfXvd61632XPTIz3WWLly5WaPLwfPI2yqiPsRH//4x4f9vdHaeD2KKM6ToFP0xR/5yEfq9iToLR0TjOdJ0Ndff/0Wn8Qw1idBX3fddTVPgt44ZsTkfRL00qVLa/qPiIg3vOEN0dXVtc0+4hOf+MSYp3nQ4O9ysoxHDK5LGz8V+NWvfnXNurSlfjbV/uHG8zBFzA996EM18zDV/uHG8/CCCy4Yd7xB9XgS9LaW+WQfs9zcPNzWfkTK/cMi9RGDJupJ0Js75zRYrL+xIh9rFGE8IlX/3kx9RBHGLCMmvo8Y77p03nnnNd14RBH6iIjin/tMtX9YxD5i3rx5Y5vgPzvnnHNq1u9U24yN52GKmGeffXbufcTHPvaxcec5uH+oj9igUfqIjW06D1OcB49Ie6yx8fHlZNqPiGiM8xqf+tSnhsUerU3POaU+/6CP2KAR+ohNTZZjjUqlEtdff320trYOjXFvOhY9kX1EqvPgeV7ftqV+NiI2e/6hs7PTk6D/TB+xwdb6iJkzZ26xjnXTHIamcbOt1E17e3vsvffeo/5ea2trnHrqqXHaaacNtWVZFjfccEO89a1v3eL3yuXysBO8mxpc0SM2/FA3fr2pwZ2wzeno6IiOjo7NvlcqlbYad8qUKVt8r729fagj3Zytxe3s7Bx64tem2tratvrdwY5lc7Y2X1tbW7cad+M7aG9qa/NwPMtmPPNwa8vGPNxgPOv3eObh1tbv8czDrS2bZusjNn1KwMbzrVnW74jG6yPGYnBZ6iM2SN1HpBjsmDNnTuH6CNvADRqtjyjaPEz11KbN5dYofcSgkc7D9vb2Ydvgjo6OLeY7kj6iVCoNizn4t/QRk7OPyLJss8u8aPOwGfYjBjXiscZobfx38uoj5s6dO/YE/2xz+25F6yPGI+Wxxsb5b2sebtonDQ7eR2x7Ho704vcvfelLm23f3DIvWh8xHkUcj5io/YiN8x9cR7fbbrthuRWtj7AvtkER9yPGalvzcKy2NQ9Ha+N1JFXcTeNsbtkMnmwcLAwc/NzGy6lo63eEPiKlzcVvxD5iJPsRmxtTaGlp2eq6tq1jje22226zx5eTbT9ivLb0dyeij9jcct/cPs2g1Mcag/3rRPcR69evHzbmtel0j7afHdxmbBx3c/NyNH3Epsunra1ti8tna+v3eNRrPGJz/cfgjfK31UeksOl0FX0buOm61NrausV1aVv97Fhtax6O1mDuKfeTN73+J2W8QRN1rDGaZd5MY5Z5rd8bG+05p0boIzaV57HGls45Fb2f3VTRxiPGo5n6iCKMWW6sHuv3WIxkH6+Z5mEj9hGT6dznaG26T12kPmI8Us7DjaXeFxuc9jz7iBQ2zU0f8ReN1kekOq+Rx5j0lmI2yzYwoj7nNUZjopa7PmKDRuwjin6s0d7ePrTtGzx239JY0mQ61hitjfPf0no4kvMPo52HIz3/oI/YYLL1ESOlCHoSeeUrXzms7de//vVWi6ABAAAAAAAAAAAAGkmWZcOe/lMul5PdSBoAgMaU6sE7AMDkoQh6Etl///2HHuE+aMmSJXXMCAAAAAAAAAAAABqLAtvGV6lUoqenp6atu7t7i09RAgAAABrbSG9SMW/evHF9n8lHEfQks9NOO9UUPi9durSO2QAAAAAAAAAARTLei5BGEwMA6kWBLQBA8/KkYQCAYlEEPckMDAzUvJ46dWqdMgGAkXOHZRpVUdbNouQJAAAAAAAwVqO5wNyTQoC8uWkIAAAAAEwMRdANqK+vL9rb20f9vSzLYtmyZTVtM2fOTJUWAOTGHZZpVEVZN4uSJwAAAAAAAAAAAAAAjc0N4GgkiqAbwN/+7d/GXXfdFU888UQ8/vjjceCBB8avf/3rUce56667hj0Jer/99kuVJgAAAAAAAAAAozDeC8VcJAYAjFeWZVGpVGrayuVylEqlOmUEAACQ3mjGUo3HQrEogm4ADz/8cNx2221Dr3/3u9/FmjVrYurUqaOK89Of/nRY24te9KJx5wcAAAAAAAAAADDR3EgAYPwqlUr09PTUtHV3d0dnZ2edMgJgskqx/71pjDxiAgBQLIqgG8Dhhx8eP/nJT4Ze9/b2Rk9PT7z97W8fcYwsy+LLX/5yTduuu+4ahx9+eLI8AQAAAAAAAAAAoEjGW0w/mhgAAAAAQFoNUQSdZVm9U6irv/mbv4lPfvKTNW3z5s2Lt7zlLdHa2jqiGF/84hfj/vvvr2n7h3/4h2hra4hFDAAAAAAAAAA0KcVnAMCWjGYbP9me+l7kJ1tmWRaVSqWmrVwuR6lUaqiYAAAAQPHVvUL20ksvrXcKdXfYYYfF4YcfHvPnzx9qu+uuu+Lcc8/d6gm+QTfeeGOcddZZNW2zZs2Kv//7v0+eK0DeDGZPbs184goAAIBaxgAAAAAAAIqpUqlET09PTVt3d3d0dnY2VEwAAIDxKPLNqxi78S4zyzy9uhdBn3LKKfVOoSF8/vOfjxe96EU1T8X+l3/5l+jt7Y158+ZFR0fHsO9kWRZf//rX433ve9+wiwW//OUvx4wZM3LPGyA1g9kAAADQHIwBAAB58cRZAAAAAAAAgMmh7kXQbHD00UfHhz70oZg7d25N+2c/+9m48sor493vfnccffTRMWPGjHjqqafit7/9bVxxxRXxu9/9blisv/u7v4uTTjppolIHAACAhuXCdwAAAAAAAAAAAAAoJkXQDeTCCy+MpUuXxle/+tWa9v/7v/8b8QXXf/u3fxtf+tKXcsgOAAAAKLosy6JSqdS0lcvlKJVKdcoIAAAAAACAVNwgGAAmN9d9AADNSBF0g/nKV74Shx9+eJx22mmxbt26EX+vq6sr5s6dG6eeemqO2QEAAABFVqlUoqenp6atu7s7Ojs765QRAAAAAAAAAAAj4boPAKAZtdQ7AYZ7z3veEw888ECcffbZsdtuu231szvvvHOcfvrp8cc//lEBNAAAAAAAAAAAADChsiyL9evX1/yXZVm905oQzTztAAAAABPBk6Ab1OzZs+PCCy+MCy+8MO677764/fbb48knn4zly5dHZ2dn7LrrrnHQQQfFQQcdFKVSqd7pAgAAAAAAAAAAAE2omZ9I2AzTPmfOnBF9bt68eeOOAQAAALApRdAFsN9++8V+++1X7zQAAAAAAAAAmtJ4L/p3wT8AAAAAMBrGJAEANlAEDQAAAAAAAAAAAIxblmVRqVRq2srlcpRKpTplBAAAAAAUmSJoAAAAmoY7pAIAAADNpiiFSEXJEwDYukqlEj09PTVt3d3d0dnZWaeMgEY03vO2o4kBAAAAFJsiaABgi8Z7ssDJBgCAsXPxNwAAACkUpRCpKHkCABPPeDkAAAAANC9F0AAAAAANyMXfAAAAAABgvBwAAAAakZuWARNFETQAAAAAALmZM2fOiD87b968cccAACaWC1wAAAAAAACaj5uWARNFETQAAAAAAAAAY+ICFwAAaC4jvWGhGx4CAAAAkEJLvRMAAAAAAAAAAAAAAAAAAADYmCdBAwAAAAAAADSgLMuiUqnUtJXL5SiVSnXKCAAAAAAAAAAmjiJoAAAAgElozpw5I/rcvHnzxvV9AAAgP5VKJXp6emrauru7o7Ozs04ZAQBAvsY7tj2aGAAAAEB9pDh2d/wPzUMRNAAAMCE8uQgAaHZuTgAAAKSmUAwAAAAAAIDJTBE0AGyDi0cA0vDkIgAAAAAAAACKaDTX/rjRJQAAAEA6iqDJVZZl0dfXF9Vqtd6pwJCWlpZob2/31EmAEfL0XgBGw3YDAAAa03hv9uhCbSAVxSMAAAAAAADASCmCJhdr166NFStWxKpVq2JgYKDe6cAwra2tMW3atJg+fXp0dXXVOx2AhubpvY3FBctAo7PdAACA5ubGSKRgPQIAAAAAAGgMbm4K1JsiaJJbtWpVPPzww9He3h477LBDTJ06NVpaWlyUQEPIsiyq1WqsWbMmVq5cGcuXL4/dd989pk2bVu/UAJJwcSAAAAAA9eTGSJPbeG/QN9IY1iNGywVYAFAfE7V/SFquKwAAAAAmi/GOLRmbKgZF0CS1du3aePjhh2P77beP3XbbzcAoDWvq1Kkxa9asWLx4cTz88MPxjGc8wxOhgUnBxYEAAAAAAMU13oKU8RYiudADAGDyc10BAADkx02HACA9RdAktWLFimhvb1cATSGUSqXYbbfdYt26dbFixQpF0ABQQAYMgcnC0zIYZNsGAADNTUEKALA1xg8BmGxs2wCYbIzxAkB6iqBJJsuyWLVqVeywww4GHyiMUqkU22+/fSxfvjx22WUX6y4AFIwBQwAmG9s2AAAAAGBLjB8CMNnYtgEAALAtiqBJpq+vLwYGBmLq1Kn1TgVGpaurK5YuXRp9fX3R0dFR73QAqJPxPoHT0zcBAAAAAAAAaCTOgwMAAABQdIqgSaZarUZEREtLS50zgdFpbW2NiL+swwCQpyzLolKp1LSVy+UolUp1yggAAAAAAAAAAAAAAKDxKIImOQU8FI11FhipZiheHe9doEcTo1lVKpXo6empaevu7o7Ozs46ZQRACs2wn1B0lhEAAAAAAAAAAABAsSiCBgAYIcWrNBOFYjA+fkPNx35C47OMgMkixY2n3LwKAAAAAAAAYOxGc851Sw8ect4WAEZGETQAAJOCgsO0FIrB+PgNAQBFMtKT61s6OT+aGAAAAAAANB+FYgAAAIyVImgAmMQUhU5uLlKvpeAQAAAAAAAAmAwUigEwXq4bAwAAYLJQBA0ADSKPgWdFoQBAXlyABQDASLjYEgAAAAAmnuvGAAAAmCwUQVNXzXjBezNOMzAyBp4BAIZTNAPQGPTHwFgZ84KRcaMpAAAASM/YNgAAABSfImhoUs95znPi7rvvjoiIN77xjfFf//Vf2/zOTTfdFMcee+xWP1MqlaJcLseMGTPi2c9+drzsZS+Ld7/73TF79uwR53b33XfHlVdeGT/+8Y9j0aJF8cQTT0RLS0vssssuccghh8SJJ54Yb3zjG2O77bYbcUwAAIpnpBdvu/h7clM0w2SlyIWiaYb+OMVvaiQxXHQHAAAAADAxmmFsGwAARsK1CkCRKYKGJvSrX/1qqAA6IuLqq6+Oxx57LHbZZZdxx86yLNavXx+PPPJIPPLII/GTn/wkPvGJT8TFF18cJ5988la/+8gjj8RZZ50V3/nOdyLLsmHvL1y4MBYuXBhXXXVVnHHGGXH++efH+973PjtdAADUjSJGms1411frO4CL7pi87BsDAAAAwLY53wYAQD24VgEoMkXQ0IQuueSSiIh45jOfGYsWLYr+/v742te+Fh/+8IdHHOPEE0+MCy64YFj74N1hHnvssbjiiiviyiuvjLVr18Ypp5wSs2bNile/+tWbjXfbbbfFX/3VX8Wjjz4aEREzZ86Mt7zlLfHSl740dttttxgYGIj77rsvrrnmmvj+978fS5cujVNPPTWuv/76+O53vxtTp04dw5yg3sb7dMfRxACoh2Z9iq0L3wEAAAAAAAAAAAAAgPFSBA1NZt26dfGf//mfERHxute9Lv73f/83fvWrX8W///u/xznnnBMtLS0jirPTTjvFIYccstXPvP71r485c+bERz/60ciyLE499dS47777hj25+f7774+Xv/zlsXLlyoiIeP/73x+f+MQnYtq0aTWfO/roo+Nd73pX/O53v4vu7u544IEH4tprr43u7u647rrrorW1dYRzAQAAYOzczKexuRkHAAAAAAAAwOikOEfqPCsAAJCHkVU7ApPGlVdeGStWrIiIiJe+9KVx0kknRUTEQw89FNdee23yv/fhD384nv70p0dExB/+8Ie49dZba97v7e2Nv/7rvx4qgP7sZz8bX/jCF4YVQG/s4IMPjv/93/+N5zznORER8eMf/zj+9V//NXnuAAAAAAAAAAAAAAAAAEB9eBI0NJlLL700IiK6urrila98ZSxfvjzOOuusqFarcfHFF8cJJ5yQ9O+1tbXFcccdF5dccklERNxxxx1x1FFHDb3/zW9+M+66666IiHjDG94Qp5122oji7rzzznHppZfGkUceGdVqNT7+8Y/H//f//X8xY8aMpPkDAI3BUz0BAAAAAAAokizLolKp1LSVy+UolUp1yggAAAAAoHgUQUMTeeCBB+Kmm26KiIjjjz8+urq6oqurK172spfFDTfcENddd10sWrQonvGMZyT9u7Nnzx7697Jly2re+/SnPz307w9/+MOjivv85z8/3vrWt8bll18ea9asiUsuuSTOPPPM8SULAAAAAImM9EY8W7qRz2hiAAAAAI2lUqlET09PTVt3d3d0dnbWKSMAAAAoDjcXA2CQImhoIpdeemlkWRYRESeffPJQ+zve8Y644YYbolqtxle/+tX4xCc+kfTvLlmyZOjfs2bNGvr3Aw88EPfee29ERDz72c+OQw45ZNSx3/SmN8Xll18eERFXXXWVImiAJqGQAAAAAAAAAAAAAAAmJzcXG5vRXB+9peusXWMNNBpF0NAkqtVqfOMb34iIDYXIr3nNa4bee8Mb3hD/+I//GKtWrYpLLrkk5syZE+3t7Un+bl9fX/zoRz8aen3UUUcN/ftnP/vZ0L9f8IIXjCn+cccdF+3t7dHX1xe33XZb9Pb2RkdHx9gTBoAmY7ADaCRucgEAAAAAAAAAAAAADFIEDU3ihhtuiIceeigiIt761rfWFDl3dXXFG9/4xrj00kvjsccei6uvvjpOOumkcf/NLMvi9NNPj0ceeSQiIo4++ug44IADht5/4IEHhv69zz77jOlvdHZ2xs477xyPPPJI9Pf3x8KFC+PZz372+BIHAACgrrIsi0qlUtNWLpejVCrVKSNoHm6SAwAAAAAAAAAAQKNQBA1N4pJLLhn69ymnnDLs/VNOOSUuvfTSiIi4+OKLt1kE/dRTT8WCBQuGtQ8MDMSKFSvijjvuiMsvvzzmz58fERuKlb/0pS8NizFo+vTpI56WTe2yyy5DhdbLly8fcxwAAAAaQ6VSiZ6enpq27u7u6OzsrFNGAAAAAMBYuOEhAAAAAADjoQgamsCyZcvi6quvjoiIgw46KA499NBhn3nxi18cz3rWs+KBBx6IG2+8Me6///7Yd999txjzmmuuiWuuuWZEf3/WrFnxne98Jw455JCa9nXr1g39ezwXsre1/aUry7JszHEABnnyGQAAAABs20jHwIyhAQA0Lzc8BAAAAABgPBRBQxP49re/PXRX3c09BToiolQqxTve8Y746Ec/GlmWxcUXXxyf+cxnRv23WltbY9q0aTFr1qw45JBD4rjjjou3vvWtMXXq1GGf3fjpz+N5gvOyZcuG/r3DDjuMOQ4UnQsOAQAAAAAAAAAAmsdEPuwhy7Kha1EHlcvlKJVKI86BDcxLaA5+6wAAaSiChiZwySWXDP37jDPOiDPOOGOb3/nGN74RF1544RbvvHvKKafEZZddNq689tlnn6F/P/jgg2OK0dvbGw899FBEbCjA3nPPPceVEwAAAAAAAAAAAFAsHiCRv0qlEj09PTVt3d3dW7zOlC0zL6E5+K0DAKShCBomuTvuuCN++9vfjvp7Tz31VHz3u9+Nd7zjHTlktcGLXvSioX///Oc/H1OM2267LdavXx8REYcddliUy+UkuQEAzcsdOAEAAAAAAAAAAIBG0AzXNI73hjajiQFA8SiChknu61//+tC/zzzzzDjiiCO2+vnf/va3MXfu3IiIuPjii3Mtgj7ggANi//33j3vuuSfuuOOOuP322+PQQw8dVYxLL7106N/d3d2pU4TcOFADaFzuwAkAAAAAQDNJcd7RuUsAAACAfLimsfk0Q+E7wGgogoZJrLe3N6644oqIiJgyZUp85CMfiWnTpm31O6997Wvj3/7t32LFihVx6623xh133BHPfe5zc8vxAx/4QPzd3/1dRESce+65ce211474u/fdd19cfvnlEbFh+v7f//t/ueQIAABAfsZ7gyAX2AIAQLG5aSjNzsVsAMU3mn0R45wAADA5GecEUlL4DlBLETRMYt///vdj6dKlERHxute9bpsF0BEbionf/OY3x1e+8pWIiLjooovioosuyi3Hd7/73fHlL3857rzzzrjuuuvi4x//eHz4wx/e5veWL18ef/M3fxPr16+PiIizzz47Zs2alVueAAAAAACTnSIsAJh4LmZrLOO92NjFygAATAZu8AEAAEAjUQQNk9gll1wy9O+TTz55xN9717veNVQEfcUVV8S//uu/xnbbbZc8v4iItra2+O53vxtHHnlkrFixIj7ykY/Eo48+GvPmzdti0fbvfve7eNvb3hZ33XVXRES89KUvjQ996EO55AcAAAAA0CwUYQEAAOMx3iefKZYCACYjT4cFAAAYn5Z6JwDkY/HixfE///M/ERExa9aseOUrXzni7x5xxBHxnOc8JyIiVq1aFVdccUUuOQ569rOfHT/5yU9i9uzZERHxb//2b7H33nvHaaedFldffXX86le/iptvvjkuueSS6O7ujsMOO2yoAPrlL395XH311dHe3p5rjgAAAAAAAAAAAAA0lyzLYv369TX/ZVlW77QASEAfDwDF4EnQMElddtllMTAwEBERb37zm6OtbXQ/93e+851xxhlnRETExRdfHO9973uT57ixww8/PO688874p3/6p/jOd74Tjz/+eHz+85+Pz3/+85v9/IwZM+Lcc8+NU089NVpbW3PNDQAAAAAAAAAAAIDmU6lUoqenp6atu7s7Ojs765QRAKno4wGgGBRBU1dz5sypdwqT1mWXXTb077e//e2j/v7JJ58cZ599dvT19cWCBQviV7/6VcLsNm/WrFlx+eWXx3nnnRff/va348Ybb4x77rknli9fHm1tbbHrrrvGYYcdFieccEKcdNJJ0dXVlXtOAMDkNZp90Xnz5o07BgAAAAAAAAAAAAAMGul1qK5jBZqZImiYpO6///5xfX/nnXeO3t7eYe1Zlo0r7kjsu+++MWfOHDtjAAAAAAA5cFMoAAAAAAAAAACKQBE0AAAAAAAAAEwwT3doPuNd5qOJAQAAAAAAAJOBImgAJr0sy6JSqdS0lcvlKJVKdcoIAAAAAMbHmBcAAAAAAAAAAJOdImgAJr1KpRI9PT01bd3d3dHZ2VmnjACYrFI8hcWTXAAAgJEw5gUAAAAAAAAAwGSnCBoAAAAAAABgnDyhHQAAAKDYRnrj+nnz5o07BgAAACOjCBoAAAAAAABgnDyhHQAAAAAAAADSaql3AgAAAAAAAAAAAAAAAAAAABvzJGgAAAAAAIAGNWfOnBF/dt68eeOOAQAAAAAAAAAAjcKToAEAAAAAAAAAAAAAAAAAgIaiCBoAAAAAAAAAAAAAAAAAAGgobfVOAAAAAAAAAAAAAAAAACC1OXPmjPiz8+bNG3cMACAtT4ImuSzL6p0CjIp1FgAAAAAAAAAAAAAAAAAaiydBk0xLy4aa+mq1WudMYHQGBgYi4i/rMAAANIssy6JSqdS0lcvlKJVKdcoIAAAAAAAmnvFyAAAAAIDGpAiaZNrb26O1tTXWrFkTU6dOrXc6MGJr166N1tbWaG9vr3cqAAAwoSqVSvT09NS0dXd3R2dnZ50yAgAAAACAiWe8HAAAAACgMSmCJplSqRTTpk2LlStXxqxZs9wJlULIsixWrlwZ06ZNs84CAAAAAJ7+BWzTnDlzRvzZefPmjTsGAAAAAAAw+Tn/AACbpwiapKZPnx7Lly+PxYsXx2677eaiMBpalmWxePHi6Ovri+nTp9c7HQCAulLoAQAAG3j6FwAAAAAAAAAANAZF0A3unnvuiW9+85vxi1/8Iv7whz/EsmXLorW1NWbPnh0HHXRQHH/88fHWt761YQo4u7q6Yvfdd4+HH3441q1bF9tvv310dXVFa2ur4gkaQpZlMTAwEGvXro2VK1dGX19f7L777tHV1VXv1EhkpHev2tLdr0YTAwAmE4UeAAAAAAAAAAAAAAA0EkXQDWrJkiXxvve9L6688srNvv/ggw/Ggw8+GNdcc0188IMfjPPOOy/++Z//OVpaWiY40+GmTZsWz3jGM2LFihWxfPnyWLp0ab1TgmFaW1tj2rRpMX36dAXQAAAAAAAAAAAAAAAAANBgFEE3oDvuuCNe+cpXxpIlS0b0+VWrVsWZZ54ZN954Y1x55ZUxZcqUnDPctq6urujq6opddtkl+vr6olqt1jslGNLS0hLt7e2eTg4AAAAAAAAAAAAAANAEsiyLSqVS01Yul9WWADQ4RdANZuHChXHsscfGU089Ney9Aw88MPbYY49YsWJF3HXXXbF8+fKa96+99tp405veFN///vcbZgNcKpWio6Oj3mkAAAAAAAAAAAAAAAAATapSqURPT09NW3d3d3R2dtYpIwBGoqXeCfAX/f398cY3vnFYAfTrX//6+MMf/hB33nln/PCHP4xf/OIX8eijj8bXvva1mD59es1nf/CDH8TnP//5iUwbAAAAAAAAAAAAAAAAoKlkWRbr16+v+S/LsnqnBTCpKIJuIBdddFHcfvvtNW3/9E//FD09PbH33nvXtHd2dsa73/3umD9/fuy66641733sYx+LFStW5J4vAAAAAAAAAAAAAAAAQDMafLr0xv9VKpV6pwUwqbTVOwE2qFQq8bGPfaym7cUvfnF8+tOf3ur39tprr/jBD34QRx55ZPT19UVExFNPPRWf/vSn44ILLsgtXwAAAAAAKLo5c+aM6HPz5s0b1/cBAAAAAAAAAIDRUwTdIP77v/87nnjiiZq2efPmRalU2uZ3DzvssPi7v/u7+OIXvzjU9pWvfCXmzJkTLS0e9g0AANDsRlOco8AHAAAAAAAAgKLKsmzY0xfL5fKIrskGAACg8aiQbRD/8R//UfP6wAMPjBe+8IUj/v4//MM/1Lx+/PHH42c/+1mS3AAAAAAAAAAAAAAAGl2lUomenp6a/zYtigYAAKA4FEE3gL6+vrjxxhtr2k488cRRxXj2s58de++9d03bf//3f487NwAAAADIW5ZlsX79+pr/siyrd1oAAAAAAAAAAABAHbXVOwEiFixYEKtXr65pO+aYY0Yd56ijjoo//vGPQ69vuumm8aYGAABMQnPmzBnR5+bNmzfuGAAwEoN35N9Yd3d3dHZ21ikjAKCRZFk27Gk95XI5SqVSnTICAKCoRnN+Y0vnSZwjAQAAAACYOIqgG8Bdd901rO3ggw8edZyDDjqo5vXdd98d69atiylTpow5NwAAAAAAAKgnN0wBAAAAAAAAgOakCLoB3HPPPTWvu7q64mlPe9qo4+y99941r6vVajzwwANxwAEHjCs/AAAAAEhlpE/K2dKTdkYTAwAAAAAAAAAAACiuUpZlWb2TaHYnn3xyXH755UOv99lnn7j//vtHHedXv/pVHHnkkTVt1157bRx//PHb/G6pVNriex0dHaPOBWAkBgYGxh2jtbVVzEQxN42XR8xGnO6JipmHokx7s8SciN9QHjEbcV6KWcyYeWjW31AeirIeidlYMW3bxMxLUaa9COt7HjEbcV6KWcyYRZHH7zK1oixzMSd/zInatm1JtVqted3S0jKuvz0ejbh8xGz8mPYPxRSz8WL6XeYbMw9FmfZmiek3JKaYzdF3+l2K2UwxbduKF3NrxjqWVJRpL0rMPDTrbygPRZl2MdPFK0rMRpyXYhYz5pbkcc5pPDH9hsQUc+zxihSTv+jt7d3ie1sqdVYE3QCOO+64uOGGG4ZeH3PMMfHzn/981HEWLlwYe+21V03bN7/5zTj55JO3+d2tFUEDAAAAAAAAAAAAAAAAAEAetlTq3DbBebAZTz31VM3r7bfffkxxpk2bNqxt2bJlW/1OpVKJSqUypr8HAAAAAAAAAAAAAAAAAAB5aKl3AsSwIuSurq4xxdnc99avX7/V78ydOzemT58+pr8HAAAAAAAAAAAAAAAAAAB5UATdADYtgm5rG9sDultbW4e19fX1bfU7Z599dqxYsWJMfw8AAAAAAAAAAAAAAAAAAPIwtmpbkhoYGKh5vbli5pHY3Peq1epWv1Mul6NcLo/p7wEAAAAAAAAAAAAAAAAAQB4UQTeA9vb2mtf9/f1jirO5pz6nKHDu6OgYd4wi6O3tLcS0yjMteaZVhDyLkGOEPFOTZzpFyDFCnqnJM50i5Bghz9TkmU4RcoyQZ2ryTKcIOUbIMzV5plWEPIuQY4Q8U5NnOkXIMUKeqckznSLkGCHP1OSZThFyjJBnavJMqwh5FiHHCHmmJs90ipBjhDxTk2c6RcgxQp6pyTOdIuQYIc/U5JlOEXKMkGdq8kyrCHkWIccIeaYmz3SKkGOEPBm73t7eUX+nlGVZlkMujMJzn/vcuPPOO4ded3d3x1VXXTXqOCtWrIgddtihpu1zn/tcfOADHxhvipPeypUrY/r06bFixYrYfvvt653OFskzLXmmVYQ8i5BjhDxTk2c6RcgxQp6pyTOdIuQYIc/U5JlOEXKMkGdq8kynCDlGyDM1eaZVhDyLkGOEPFOTZzpFyDFCnqnJM50i5Bghz9TkmU4RcoyQZ2ryTKsIeRYhxwh5pibPdIqQY4Q8U5NnOkXIMUKeqckznSLkGCHP1OSZThFyjJBnavJMqwh5FiHHCHmmJs90ipBjhDyZeC31ToCI6dOn17xevXr1mOKsWrVqWNvUqVPHFKvZlMvlOP/885M8OTtP8kxLnmkVIc8i5Bghz9TkmU4RcoyQZ2ryTKcIOUbIMzV5plOEHCPkmZo80ylCjhHyTE2eaRUhzyLkGCHP1OSZThFyjJBnavJMpwg5RsgzNXmmU4QcI+SZmjzTKkKeRcgxQp6pyTOdIuQYIc/U5JlOEXKMkGdq8kynCDlGyDM1eaZThBwj5JmaPNMqQp5FyDFCnqnJM50i5BghTyaeJ0E3gNe//vXxve99b+j185///Pj1r3896ji///3v46CDDqpp+/73vx8nnnjiuHMEAAAAAAAAAAAAAAAAAICJ4knQDWC33Xareb1kyZIxxdnc92bPnj2mWAAAAAAAAAAAAAAAAAAAUC+KoBvAXnvtVfN68eLF0d/fP+o4ixYtGta25557jjkvAAAAAAAAAAAAAAAAAACoB0XQDeA5z3lOzev+/v5YuHDhqOPcd999Na933nnnmDlz5rhyAwAAAAAAAAAAAAAAAACAiaYIugE873nPG9Z22223jTrOpt857LDDxpwTAAAAAAAAAAAAAAAAAADUiyLoBjBz5sw48MADa9p+8pOfjCrG2rVr45Zbbqlpe8UrXjHu3AAAAAAAAAAAAAAAAAAAYKIpgm4Qr33ta2teX3311bF+/foRf7+np2fY51/zmtckyQ0AAAAAAAAAAAAAAAAAACaSIugG8Y53vKPm9VNPPRUXXXTRiL7b398fc+fOrWk7+uijY//990+WHwAAAAAAAAAAAAAAAAAATBRF0A3igAMOiFe84hU1beecc07ceuut2/zu+9///rjrrrtq2v75n/85aX4AAAAAAAAAAAAAAAAAADBRSlmWZfVOgg1uu+22eMELXhDVanWobaeddoorrrgiXv3qVw/7fG9vb5x++unxpS99qab9qKOOil/+8pe55wsAAAAAAAAAAAAAAAAAAHlQBN1gzj777Jg3b15NW6lUihNOOCHe8pa3xF577RVr1qyJ+fPnx1e+8pX44x//WPPZ7bffPubPnx977733RKYNAAAAAAAAAAAAAAAAAADJKIJuMNVqNd797nfHZZddNurvdnZ2xtVXXx2vetWr0icGAAAAAAAAAAAAAAAAAAATpKXeCVCrpaUlvv71r8cHP/jBaGtrG/H3dt999/jRj36kABoAAAAAAAAAAAAAAAAAgMLzJOgGduedd8YFF1wQ1157baxdu3azn5k9e3a85z3vidNPPz2mT58+wRkCAAAAAAAAAAAAAAAAAEB6iqALYN26dfGLX/wiHn744ViyZEm0tbXFzJkz49BDD42DDjooWlo80BsAAAAAAAAAAAAAAAAAgMlDETQAAAAAAAAAAAAAAAAAANBQPEIYAAAAAAAAAAAAAAAAAABoKIqgAQAAAAAAAAAAAAAAAACAhqIIGgAAAAAAAAAAAAAAAAAAaCiKoAEAAAAAAAAAAAAAAAAAgIbSVu8EaAylUmmL73V0dExgJgAAAAAAAAAAAAAAAAAATCa9vb1bfC/Lss22l7ItvUNT2VoRNAAAAAAAAAAAAAAAAAAA5GFLpc4tE5wHAAAAAAAAAAAAAAAAAADAVimCBgAAAAAAAAAAAAAAAAAAGooiaAAAAAAAAAAAAAAAAAAAoKEoggYAAAAAAAAAAAAAAAAAABpKW70ToPF1dHTUOwUAAAAAAAAAAAAAAAAAAAqqt7d31N9RBE1EbCh03twK1NHREZVKpQ4ZAQAAAAAAAAAAAAAAAAAwGZTL5S3WsW5JS54JAQAAAAAAAAAAAAAAAAAAjJYiaAAAAAAAAAAAAAAAAAAAoKEoggYAAAAAAAAAAAAAAAAAABqKImgAAAAAAAAAAAAAAAAAAKChKIIGAAAAAAAAAAAAAAAAAAAaiiJoAAAAAAAAAAAAAAAAAACgoSiCBgAAAAAAAAAAAAAAAAAAGooiaAAAAAAAAAAAAAAAAAAAoKEoggYAAAAAAAAAAAAAAAAAABqKImgAAAAAAAAAAAAAAAAAAKChKIIGAAAAAAAAAAAAAAAAAAAaiiJoAAAAAAAAAAAAAAAAAACgoSiCBgAAAAAAAAAAAAAAAAAAGooiaAAAAAAAAAAAAAAAAAAAoKEoggYAAAAAAAAAAAAAAAAAABqKImgAAAAAAAAAAAAAAAAAAKChKIIGAAAAAAAAAAAAAAAAAAAaiiJoAAAAAAAAAAAAAAAAAACgoSiCBgAAAAAAAAAAAAAAAAAAGooiaAAAAAAAAAAAAAAAAAAAoKEoggYAAAAAAAAAAAAAAAAAABqKImgAAAAAAAAAAAAAAAAAAKChKIIGAAAAAAAAAAAAAAAAAAAaiiJoAAAAAAAAAAAAAAAAAACgobTVOwHIW5ZFZMmDRkRJzIaNWYQcmzxmliX/Vf45ZtpEq1kWpVLamAPVaqSe/KyaRbSkzTPLsmhJOO1ZDvMyj5itpVK0tqb+EUX69Wggi2rirdvAQJb+t17NopR43VzfNxADiX9Eq9b3R3818fzMsii3tiaLt7bSn/pnHuvW9UZr4nWzsn5ddJTSzstKfzXK5Y6kMfuiJaZMKSeN2T+QRbkj3TKPiOjrH4j2trQx163vi7bEK1NffzU62tPm2dtfjY62dPfsqvQNJI0XEZGVStE1pT1pzL6BLNoTb4d6+6vRnniZ9w5Uo6M17fxsaS3F1I60QxTltpboSrxu5rHfFVlES+KY1awapdT7xtUsIuF2o5p4f3NQaw77xXkcE+Rx4JZ6fuYx7anXo4h81qU8YpZKadfPLIfVKI++oyjHgpFF8mOXUimL1lLa7WVTj1PkcHyZOmYRcmz2mHnsd+XRJ/UODETiYYqILKI98T58lmVJ52elP/10D1Sr0dqSdrqbOWaWZdGWej2qpt+HX9s/sGG/M6HKQDX5ONr6/oFoSbjvNVDNotyedvnkMU6xvq+a/LC6v5olH6fo7a9GW+Jpr2YRnYmXUakUycc+qlkWbYn7j3V9A5H6AGagmn79zCLtutRfzZKPxeYRs6VUinLi31AeQ2j91fTnsarVtPszEfls21pbIjoSnyuoVrPk19Gs7++PgWq6eH0D1eTzsq+afsynOPty1eT9e6lUio7U055Vkx9jVfpTn1nPZ37msX6u6+2PLEsXs69ajfbE0907UE1/7nKgmvwYOI+YHa2lmNaZ9txYlkXydTOLLPnxUN9AFpH4uoKBLH2eqWPmkWNEJP9dDlRzGIfOYdpbWvIY70p+GqswMUuRfj82Iv01c6mvO80iS39urJlj5nANb1HONeZxDi+PPPsHEu8b53G9S7WavJPrH0h/cj2PfaQsl+uHcjgOzrLkT+LMY9wnjzGa5MesWSQ/HspjXC6Xy+VyOm+bOmYpIvm5schjm5HTdWNFqM2ppt4/zGFfu7VUSn7OqVkpgmZSy7KIykC9swA2lmVZ9A+k3tnIoi/xRU0b8kwaMqrVLFas60saM8uyDScHEmtvLaW/qLzBtbaUYpfp5SglXu5traWkO8MD1SyeXNWbLmBsWDdXJl4387C+fyDmP7o86UDc2t6B+NHvH096kW1LKWL61I5kv6G+voFY+H/LkxYm9Pf1xyMPLkkaM+urRHXR7yNp0FJLxHYzkh5RtrS3x477PjtKCU8ElkqlmLZ9Z8P3m/39A/H44qeS3yGoo9ye/qg/oSzLoq+Sto9r72iN/Q/aPVoSn1BOLcuyqFT6653GNpXbW+Ko/XZOOgjZ1d4aJ+63c9qCwxz2u0oRMaXcmrT/yGN/u5plsba3sQ+uS6WI6VPaG74vzuOYoBQRXR1p16M8FGE9yktLKWLGduVkyyjLsuQ38cmj7yiStsTHwBv6pLYoJbyQr9nHKWC88tjvykPfQDX+9OTqpIdtLaWIWV3ptkOD2lvS9Z29A9W4+8kV6W9oSzItEbFDOd1416Bya0vSmOv7q3HbIysiYf1VDFSzWLo27fayf6Aajy1flyxeSylih6npf+ep9Q9UY8mydUl/66WIKHekXY+qWRaV3pRr0Z/PP+w4JWmeHa2lOPhp2yW9sKkUEVPa0+4b9w5U477H1ydf7lPa0y73llLErKltDf87Sq29pRT7z5iWy43qUhrIsliReIw3L6m3be2tpdh352nRkvD4Mo8xmvX9AzH/kaeS/darWRbr+tKPca7rS9u/F0Ue/WZbSymeOb0r+Y3VKykr6ePPx1jL1jb8diiP9bPSX407HlmV/OZ3KVWzLCp9zTlmPLWjNboP3iXpeaxSREzvSHuepBQRnYm3bf3VaixZV0kWr5m1lkoxe0raY8FqlsX6xH1xHtpaSvHMGVMbfj+2KFqGzmmkjZv6mrn8zmWJmSRSDtfwFkUe5/DysOG603Tb4DzOu1SzLNYlLvwYqGaxdF3a623z2EeKKMZ123mcC85r3Cf1GE3qY9aWiJhebvzrnPKSx/qe8txlxIZ9pJnTylEqpd0/bmtNf6OYDdOeLl5RanOyLIveglyf8rQdOhRCJ9DYV2zDOBWjOwPGqyi/9dR3monIZ9pLkX7nughaSvlMd6PfsSivmHnoz+Gu9JX+avKnDJVKaQ+kB6pZ8pPTAwPpn/YWA/1pC6AjNhRBp34KY2tb0gLoiME0G7/frA5Uk284SqVSQxdAR6S/E3BERFtba8MXQEek/0nmpaOtJfldGMttLemfCJw02galnPY/UivCutSSePublzz2u6xHja8o62czS7188jq+TK0o4xSQQlG2l3mMfeSxHUo9fthfTf9kNtJKPd4Vkc84dN9ANWkBdEQxxmPzWD55qGbp+7jIo3/PoUPKoy9uay0lv+A/j+1lf/ohyVzyLMo+fGptLenXozzkMcabhzy2ba05LKM8Zmfqp4nlkWNBVqNc5NFvtpZyWDeTRtugP4f9jzzmZz6/y/TnmJNr9PxylMd5rLzGodNf85I0XFNr1n3YiHz2kZpZXmOnzbp+Nivde+NLPyZZjP3ivK6NLcJ4eR5yuR1DHtfRRA7rZ9JoxRnXz0MeyyePmEU5xirC+p6XouQZseGGD4xf41+1DQAAAAAAAAAAAAAAAAAANBVF0AAAAAAAAAAAAAAAAAAAQENRBA0AAAAAAAAAAAAAAAAAADQURdAAAAAAAAAAAAAAAAAAAEBDUQQNAAAAAAAAAAAAAAAAAAA0FEXQAAAAAAAAAAAAAAAAAABAQ1EEDQAAAAAAAAAAAAAAAAAANBRF0AAAAAAAAAAAAAAAAAAAQENRBM2kVqp3AsCEKMpvvaWUPtM8pj2LiCzLcojc2KpZPtOdOmYe61EeMfPQ1lJKvs6X21qiJXHQLMuSLvfWllKkXkStrS3JY0ZrWyQPmlUjEv+GsoH+yKrVtDGrxeg3W1pbkm84sixLvoxSK+XQx/X3D0Q18XqUh4J079HbX41qNe16VOmvxkDimLnsd+W0/5FaEdalauLtb17y2O+yHjW+oqyfzSz18snr+DK1ooxTQApF2V7mMfaRx3Yo9fhhW0uL/qPBpR7vishnHLq9tSX5ye8ijMfmsXzy0FJK38dFHv17Dh1SHn1x/0AW1dS/yxzmZ1v6Iclc8izKPnxq/dX061Ee8hjjzUMe27aBHJZRHrOzrTXt/lweORZkNcpFHv3mQJbDupk02gZtOex/5DE/8/ldpj/HnFyj55ejPM5j5TUOnf6al6Thmlqz7sNG5LOP1MzyGjtt1vWzWeneG1/6Mcli7BfndW1sEcbL85DH3Mxj3CeP+Zn+2LIY4/p5yGP55BGzKMdYRVjf81KUPCMiWht+kKYYSlmz9pzUKJfL0dvbO6y9o6MjKpVKHTJKJ8s2dOxpg0YOezJiNmw8MfMpmEpsQ8y0iVazLPnB1UC1mrxWLKtmyc8SZFmW9OA/y2Fe5hGztVSK1tYcLgJPvR4NZFFNvHUbGMjS/9arWZQSr5vr+wZiIPGPaNX6/uhPfIJxIMui3NqaLN7aSn/yk4Hr1vUmP6iqrF8XHaX0hYzlckfSmH3RElOmlJPG7B/IotyRbplHRPT1D0R7W9qY69b3RVvilamvvxod7Wnz7O2vRkdbusuWK30DSeNFRGSlUnRNaU8as28gi/bE26He/mq0J17mvQPV6GhNOz9bWksxtaMtacxyW0t0JV4389jviiyiJXHMalaN1Jd2VatZ0jNO1cT7m4Nac9gvzuOYII8DtzwKKVJPe+r1KCKfdSmPmKVS2vUzy2E1yqPvKMqxYGSR/NilVMqitZR2e9nU4xQ5HF+mjlmEHJs9Zh77XXn0Sb0DA5F4mCIi21AcmjRkliWdn5X+9NM9UK1Ga0va6W7mmFmWRVvq9aiafh9+bf9A+httDVSTj6Ot7x+IlOViA9Usyu1pl08e4xTr+6rJD6v7q1nycYre/mq0JZ72ahbRmXgZlUqRfOyjmmXRlrj/WNc3EKkPYAaq6dfPLNKuS/3VLPlYbB4xW0qlKCf+DeUxhNZfTX8eq1pNuz8Tkc+2rbUloiPxuYJqNUt+Hc36/v4YSHjv0L6BavJ52VdNP+ZTnH25avL+vVQqRUfqac+qyY+xKv2pz6znMz/zWD/X9fZHlqWL2VetRnvi6e4dqKY/dzlQTX4MnEfMjtZSTOtMe24syyL5uplFlvx4qG8gi0h8XcFAlj7P1DHzyDEikv8uB6o5jEPnMO0tLXmMd+Vw7/+CxCxF+v3YiPTXzKUvGsrSnxtr5pg5XMNblHONeZzDyyPP/oHE+8Z5XO9SrSbv5PoH0p9cz2MfKcvl+qEcjoOzLPnNSPMY98ljjCb5MWsWyY+H8hiXy+VyuZzO26aOWYpIfm4s8thm5HTdWBFqc/K4WWzyB5eVSsnPOU0GY6ljVQRNREzuImgAAAAAAAAAAAAAAAAAAOpnLHWsqW/CAQAAAAAAAAAAAAAAAAAAMC5t9U5gMrnwwgvj3HPPjYiIU045JS677LJRx6hWq/GWt7wlBgYGxpXLHnvsEZ/5zGfGFQMAAAAAAAAAAAAAAAAAAOpBEXQi9913X1x44YVJ4nz3u98dd5znPOc5444BAAAAAAAAAAAAAAAAAAD10FLvBCaDVatWxUknnRRr1qwZd6zbb789QUYAAAAAAAAAAAAAAAAAAFBciqDHaf369dHd3R133nlnkngLFixIEgcAAAAAAAAAAAAAAAAAAIpKEfQ4rF69Ol772tfGT37yk2QxNy2C/vjHPx5Zlo36v9///vfJcgIAAAAAAAAAAAAAAAAAgInUVu8Eiuquu+6KN77xjXHvvfcmjbtpEfShhx6aND4ApPTQQw/Fk08+We80tmnmzJmxxx571DuNSSGPZW75QHNo5v6jKNNelDwhhWZd34sy3Y4zGp9lRApFWY9obEXZDumP0tJ/pGX9bD76ORifomyHmnk/KXWe+rjm1My/dZpPs/bvEX5Dzch6lFZR5mdRtuupWTebb5nnJfW6VJTlU5T+qJl/69BM9B8wPn5Dk0TGqH3jG9/Iurq6sojY4n+nnHLKqOM+/PDDw+IsXrw4/QRsRkdHx2ano6OjY0L+PsCmFi9enJ1//vlJ+0Ex08ZctGjRNreHjfJfV1dXtmjRomTTnsf8TK1Iy7wIy0dMMRsxXpFiNnP/UZRpL0KeRVnfxWz8mEVY37Ms/bQXZbodZzTvb6gZl1FRlnmzr0f+a+z/irIdavT+qEgx9R+N/TsqynrUzDH1c40dswg5NnvMIm2HmnU/KY889XHNF7OZf+u2bc0Xs5n7d7+h5ovZrOtRXjGLMj+LtF1v9HlZhOvlsqy5l3kR1qUiLZ+i9EdF+K2L2dgxi5Bjs8fUfzR2zCLk2Owxi/IbajZjqWMtZVmWBSNy3333xQc/+MH43ve+t83PnnLKKXHZZZeNKv4PfvCDOPHEE4dez549Ox577LHRpjkm5XI5ent7h7V3dHREpVKZkBwANvbb3/42Dj/88Jg/f34cdthhYjZwzLlz58aee+6ZJGYeFi5cGGeffXbDz8/UirLMi7J8xBQzRcwi5Jh3zGbuP4oy7Y2cZ9HWdzEbP2Yjr+8R+W2HijLdjjMaP6ZlZNuWImajr0c0tqJsh4rQHxUxpv4jDcdtzRtTP9eYMYuQo5jF2A7ZT0qXpz6uuWM282/dtq35YjZb/x7hN9TMMZttPco7ZlHmZ6Nv11MryrqZh2Zd5nnJa/yw0ZdPUfqjovzWxWzsmEXIUUz9RyPHLEKOYhbjN9RsxlLH2pZ3UpPB448/Hh/96Efjq1/9avT39w97//3vf3/cfvvt8Ytf/GJcf2fBggU1rw899NBxxQOAibDnnnvGAQccUO80mECWOTBWzdx/FGXai5InpNCs63tRprsoeTYzy4gUrEc0Kutm47OMYHz8hmB8mvk3VJRpL0qeNDbrEc2kKOt7UfKksVmP0irK/CxKnqRjmTe2Zl4+zTztwPjoP2B8/IaKr6XeCRTBhRdeGP/2b/82rAB62rRpcckll8QXvvCFaG1tHfffuf3222teK4IGAAAAAAAAAAAAAAAAAKAZeRL0GL3mNa+Jiy++OJ7+9Kcni+lJ0AAAAAAAAAAAAAAAAAAA4EnQo3bggQfGNddcEz/84Q+TFkCvXLkyHnjggZo2RdAAAAAAAAAAAAAAAAAAADQjT4Ieoec973lx2mmnxVve8pZoaUlfO75gwYLIsmzo9bRp02KvvfaKarUa1113XXz/+9+PW2+9NR5++OFYs2ZNzJw5M572tKfFscceG6973eviqKOOSp4TAAAAAAAAAAAAAAAAAADUgyLoETjvvPNip512yvVvLFiwoOb1wQcfHJdffnl85CMfiUWLFg37/OLFi2Px4sXxm9/8Jj75yU/GscceG5/61KfisMMOyzVPAAAAAAAAAAAAAAAAAADIW/pHGk9CeRdAR0TcfvvtNa9vvfXWeMc73rHZAujNufHGG+PII4+MSy65JI/0AAAAAAAAAAAAAAAAAABgwngSdIPY9EnQAwMDNa933333eOYznxk77LBDPPHEE3HHHXfEunXraj7T19cX7373u+Opp56KM844Y0R/t1KpRKVSGVfuADS3hQsX1juFrWr0/Ioo5Ty1fKC5NHP/UZRpL0qekEKzru9Fme5Gn6eNnt9EaPR50Oj5sYHlxHgUZTtkPc+H+ZqG+di89HMwPo2+3ttPShe70Zc1+Wr05d/o+VEszda/p45FsViP0irK/Gy2ZdVs07s55kEaec3HRl8+RemPGn0+AmnpP2B8/IaKTxF0A+jr64u77757s++9/e1vj1NPPTWe//zn17SvX78+rrnmmjjvvPPi3nvvrXnvgx/8YBx44IHx6le/ept/e+7cufHRj3507MkD5GTXXXeN888/P3bddVcxGzTmzJkzo6urK84+++xkMfPS1dUVM2fOTBYvj/mZWpGWeRGWj5hiNmK8IsVs5v6jKNNehDyLsr6L2fgxi7C+R6Sf9qJMt+OM5v0N5aHRl1FRlnmzr0c0tqJshxq9PypSTP1Heo7bmiumfq6xYxYhx2aPWaTtULPuJ+WRpz6u+WI282/dtq35YjZz/x7hN9RsMZt1PcorZlHmZ5G266kVYd3MQzMv87ykXJeKtHyK0h8V4bcuZmPHLEKOzR5T/9HYMYuQY7PHLMpviG0rZVmW1TuJyeClL31p3HzzzUOvTznllLjssstG9N0FCxbEoYceWtM2bdq0+MY3vhHd3d1b/e769evjlFNOie9+97s17bvuumssXLgwOjs7t/r9wSdBz5o1K3p7e4e939HR4UnRAGzRQw89FE8++WS909immTNnxh577FHvNCaFPJa55QPNoZn7j6JMe1HyhBSadX0vynQ7zmh8lhEpFGU9orEVZTukP0pL/5GW9bP56OdgfIqyHWrm/aTUeerjmlMz/9ZpPs3av0f4DTUj61FaRZmfRdmup2bdbL5lnpfU61JRlk9R+qNm/q1DM9F/wPj4DTWecrk86jpWRdCJjKcI+he/+EWceeaZsXDhwnj88cejpaUlvve978UJJ5wwou8PDAzEy172svjZz35W0/6Zz3wm/umf/mlEMcay8gAAAAAAAAAAAAAAAAAAwLaMpY61Je+k2LZjjjkmbr311liyZEmsXr06/vjHP464ADoiorW1NS655JJobW2taf/617+eOlUAAAAAAAAAAAAAAAAAAMidIugGM3Xq1HjWs5416u/ttddeceKJJ9a03XXXXbF48eJUqQEAAAAAAAAAAAAAAAAAwIRQBD2JvPKVrxzW9utf/7oOmQAAAAAAAAAAAAAAAAAAwNgpgp5Envvc5w5rW7JkSR0yAQAAAAAAAAAAAAAAAACAsVMEPYnMmDFjWNvSpUvrkAkAAAAAAAAAAAAAAAAAAIydIuhJZGBgYFjb1KlT65AJAAAAAAAAAAAAAAAAAACMnSLoBtTf3z+m723uqc8zZ84cbzoAAAAAAAAAAAAAAAAAADChFEHX2eOPPx6vfOUr45BDDonddtstOjo64pxzzhlTrDvuuGNY23777TfeFAEAAAAAAAAAAAAAAAAAYEK11TuBZjdjxoz42c9+FpVKZajtlltuGVOsn/70pzWvt9tuuzj00EPHlR8AAAAAAAAAAAAAAAAAAEw0T4Kus9bW1jj44INr2m655ZZ46KGHRhVn0aJFcc0119S0HX/88dHa2jruHAEAAAAAAAAAAAAAAAAAYCIpgm4Af/M3f1PzOsuyuPDCC0cV45//+Z+jv7+/pu3UU08dd24AAAAAAAAAAAAAAAAAADDRFEE3gLe97W3R1dVV0/a1r30tfvjDH47o+3Pnzo2rrrqqpu1lL3tZHHPMMclyBAAAAAAAAAAAAAAAAACAiaIIugHMnj07zj333Jq2gYGBeNOb3hTf/OY3t/i9NWvWxKmnnhrnnHNOTfvUqVPja1/7Wi65AgAAAAAAAAAAAAAAAABA3trqnQAbnHHGGfE///M/cfPNNw+1rV27Nk455ZT48pe/HG9/+9vj0EMPja6urnjsscfipptuissvvzweffTRmjilUim+9rWvxbOe9ayJngQAAAAAAAAAAAAAAAAAAEhCEXSD6OjoiO9973vxile8Im677baa937961/Hr3/9623GaGlpiYsuuije/OY355UmAAAAAAAAAAAAAAAAAADkrqXeCfAX06dPj5///Ofxj//4j6P+7tOf/vT48Y9/HO95z3tyyAwAAAAAAAAAAAAAAAAAACaOIugG09nZGV/60pfijjvuiJNPPjmmTZu21c/vv//+8dnPfjbuv//+eNnLXjZBWQIAAAAAAAAAAAAAAAAAQH5KWZZl9U6CLevv74/f/va3ce+998bSpUtjzZo1MXXq1HjGM54Rhx9+eDzjGc9I8nfK5XL09vYOa+/o6IhKpZLkbwAAAAAAADSDLMuGnV8pl8tRKpXqlBEAAAAAAAAAQH2NpY5VETQRoQgaAAAAAAAglfXr10dPT09NW3d3d3R2dtYpIwAAAAAAAACA+hpLHWtL3kkBAAAAAAAAAAAAAAAAAACMRlu9EwAAAAAAKIIsy4bdbbJcLkepVKpTRgAAAAAAAAAAADB5KYIGAAAAABiBSqUSPT09NW3d3d3R2dlZp4wAAAAAAAAAAABg8lIEDQAAAAAAAA0uy7KoVCo1beVyOUqlUp0yAgAAAAAAAADIlyJoAAAAAAAAaHCVSiV6enpq2rq7u6Ozs7NOGQEAAAAAAAAA5EsRNAAAAAAAAAAAAAAAQJPLsiwqlUpNW7lcjlKpVKeMAABodoqgAQAAAAAAAAAAAAAAmlylUomenp6atu7u7ujs7KxTRgAANDtF0AAAAAAAAAAAAAAAAAAAk0CWZVGpVGrayuVylEqlOmUEYzehRdBPPfVU/OY3v4k777wzFi1aFA8++GA88cQTsXbt2lizZk20tLTEdtttF9OmTYuddtop9tprr9hnn31iv/32iyOOOCKmTp06kekCAAAAAAAAAAAAAAAAABRGpVKJnp6emrbu7u7o7OysU0YwdrkWQff29saNN94YP/jBD+L666+PhQsXDvtMlmXD2jZ3R4HW1tY47LDD4iUveUm8/vWvjxe+8IW55AwAAAAAAAAAAAAAAAAAANRXLkXQd955Z/z7v/97XH755bFixYqI2Hyxc8TmC5439/n+/v74zW9+E7/5zW/iU5/6VOyxxx7xlre8Jd75znfGPvvsk3YCAAAAAAAAAAAAAAAAACaRLMuiUqnUtJXL5S3WdwFAvSUtgv7hD38YF154Yfzv//5vRNQWMm9uY5hl2RaLo7f2nYiIRYsWxb/8y7/EJz/5yTj++OPjtNNOi5e//OXjnQQAAAAAAAAYsWWf+9ywtkqWRe/atTVtyy+6KMpbuHhkx9NOyyEzAAAmMxcsAwAAAGNRqVSip6enpq27uzs6OzvrlBEAbF2SIujvfe97ccEFF8SCBQsiYsMge6lUGhpU37TYua2tLZ72tKfFzjvvHLNmzYqurq4ol8uRZVmsXbs21q5dG0uXLo3/+7//iyeeeGJYofSmca+99tq49tpr4/DDD4+Pfexj8apXvSrFZAEAAAAAAAAAADQcFywDAAAAANAMxlUEfdddd8X73//+uPnmmyOitvh5sHB5ypQp8aIXvSiOOOKIOPzww+M5z3lOPOtZz4rW1tYR/Y3e3t64//774/bbb48FCxbELbfcErfddlsMDAxERG1B9G233Ravec1r4qijjorPfvaz8bznPW88kwcAAAAAAAAAAAAAADCpLPvc5zbbXsmy6F27tqZt+UUXRfnPdRsb2/G003LIrD6yLItKpVLTVi6Xh+pVAAConzEVQa9ZsybOOeecuOiii2JgYGCo+Dliw87f3nvvHW94wxviuOOOi2OOOSY6OjrGnGBHR0cceOCBceCBB8bJJ58cERErV66Mn/70p3HNNddET09PLF++PCJiqPj6l7/8ZRx55JHxnve8Jy688MLYYYcdxvz3AQAAAAAAAAAAAAAAmJwqlUr09PTUtHV3d0dnZ2edMgIAYNCoi6B/9rOfxTvf+c548MEHa4qfp06dGieddFK8853vjGOOOSZ5ohvbfvvt4/Wvf328/vWvj4svvjiuv/76uOSSS+IHP/hBDAwMRKlUimq1Gl/5yleip6cnLrvssnjVq16Va04AQGNxVz4AAGA8Nnfn82a96zkAAAAwPs5dAgAAAADA2IyqCPr000+Pz3/+85Fl2VDbzjvvHKeffnq8973vjWnTpiVPcFva29vjxBNPjBNPPDEefvjhuOiii+KrX/1qLF26NCIilixZEq95zWvi/e9/f3xuMxcuAgCTk7vyAQCAC2wBAAAAGoFzlwAAAAAAMDYto/nwZz/72ciyLLIsix122CE++clPxsKFC+OMM86oSwH0pnbffff4xCc+EQ8++GBceOGFMWPGjIjYcLHnF7/4xTpnBwAAAAATa/AC243/27QoGgAAAAAAAAAAAKARjaoIOmLDk2LOOuusoeLnKVOm5JHXuEydOjU+9KEPxYMPPhjnn39+dHV11TslAAAAAAAAAAAAAAAAAABghEZVBP3Wt7417r333pg3b15Mnz49r5yS6erqivPPPz/uvffeeNvb3lbvdAAAAAAAAAAAAAAAAAAAgBFoG82HL7/88rzyyNXuu+8e3/zmN+udBgAAAAAAAAAAAAAAQEPqiIhXdXUNawMAgHoZVRE0AAAAAAAAAAAAAAAAI5dlWVQqlZq2crkcpVKpThltXqlUinK9kwCAJlOU/QSoF0XQAAAAAAAAAAAAAAAAOalUKtHT01PT1t3dHZ2dnXXKCABoFPYTYOsUQQMAAAAAAEBCHRHxqq6uYW0AAAAAAAAAAIxcwxVBn3XWWfHJT36y3mkAAAAAAADAmJRKpSiP4/vLPve5YW2VLIvetWtr2pZfdFGUS6XNxtjxtNPGkQEAAAAAAAAAQP211DuBTX3qU5+Kk08+Ofr7++udCgAAAAAAAAAAAAAAAAAAUAcNVwQdEfHtb387Xvva18aaNWvqnQoAAAAAAAAAAAAAAAAAADDBGq4Iur29PSIibrjhhnjJS14Sjz/++JhjXXXVVanSAgAAAACaXEdEvKqrq+a/jnonBQAAAAAAAAAAAJNUW70T2NQ111wTJ510UqxevTp++9vfxtFHHx3XX3997LXXXiOOccMNN8Q555wT8+fPj4GBgRyzBQAAAACaRalUinK9k2CrsiyLSqVS01Yul6NUKtUpIwAAAAAAAJrJss99brPtlSyL3rVra9qWX3RRlDdzHmvH007LITOYOM7bAgApNVwR9Ctf+cq46aab4oQTTojHHnss/vSnP8VRRx0VP/zhD+N5z3veVr/7q1/9Ks4555y46aabIssyO0gAAAAAAE2kUqlET09PTVt3d3d0dnbWKSMAAAAAAACA5uK8bePY3I0ZRnNThgg3ZgCg/lrqncDmHHrooXHLLbfEvvvuGxERTzzxRBx77LFx/fXXb/bzd911V3R3d8dRRx0VN9100wRmCgAAAAAAAAAAAAAAAAAApNZwT4Ie9IxnPCNuueWW+Ku/+qv45S9/GWvWrInXve518dWvfjVOOeWUiIh48MEH47zzzovvfOc7Ua1WI8uyoe8feeSRccEFF9QrfQAAAAAAAAAAgHHz1CYAAAAAAJpVwxZBR0TsuOOOccMNN8Tb3va2uOqqq6Kvry/e9a53xcKFC2Pp0qXxta99Lfr6+mqKnw877LC44IIL4jWveU0dMwcAAAAAAKAIsiyLSqVS01Yul6O0heIRAAAAoJiMAQAAAAAUT0MXQUdsGGD6r//6rzjttNPii1/8YmRZFh//+McjImqKn5/73OfGnDlz4vWvf32dMgUAAAAAAKBoKpVK9PT01LR1d3dHZ2dnnTICAKCeFMgBTF7GAACop46IeFVX17A2AABg6xq+CDoiolqtxgEHHBBTpkyJ9evXDxU/l0ql2H///eP888+Pk046qc5ZAgAAAAAAAAAARaZADgAAyEOpVIpyvZMAAIACaugi6Gq1Gpdddll8/OMfj0WLFtW8N3h31eOOO04BNAAAAAAAAAAAAAAAMG5ZlkWlUqlpK5fLQzUMAADAxGnIIugsy+Jb3/pWfOxjH4uFCxcOPfk5ImL69Olx7LHHxtVXXx2lUim+8IUvxGOPPRbf/OY3o729vY5ZAwAAAAAAAAAAAAAARVapVKKnp6emrbu7Ozo7O+uUEQDAli373OeGtVWyLHrXrq1pW37RRVHewk1ddjzttBwygzQargj629/+dlxwwQXxhz/8oaZ9ypQp8b73vS8+9KEPxY477hhf+tKX4rTTTossy+K73/1uLFmyJHp6emL69Ol1yhwAAAAAaBTuzg4AAADUgwsOAQAAGpvjNgCAYmm4Iui3v/3tQxciZlkWbW1t8a53vSvOP//82HXXXYc+9773vS923XXXOPnkk6NSqcTNN98cL3rRi+L666+P3XbbrV7pAwAAAAANwN3ZAQAAAAAAAAAAoNha6p3A5mRZFhER/z97dx4mV1kmCvw9vVV3ZyMhi0mQHSLIEvYddQYHEVxaBPE6gBuDu8FtZuRecRtx9IJxm6jo6Ki4jGCrOCAzgLjPcI0EDEQWWUMia/ZOqrdz/+hU01Vd3emlqquq+/d7nn6S+qrqq7fOqXrrO8t7vvPOOy/WrFkTX/rSl/IKoHPOPvvsuPHGG2O33XaLiIjVq1fH8ccfH3fddddEhgsAAAAAAAAAAAAAAAAAAJRQVRZBv/SlL40//OEP8Z3vfCf222+/YR97yimnxK9+9atYvHhxJEkSa9eujZNPPjl+8YtfTFC0AAAAAAAAAAAAAAAAAABAKVVdEfQvf/nL+OlPfxqHH374iJ9z8MEHx+9+97s4+OCDIyJi06ZN8ZKXvCS+//3vlytMAAAAAAAAAAAAAAAAAACgTBoqHUChk08+eUzPW7x4cfzmN7+Jl7/85fHLX/4ystlsvO51r4vXvOY1JY4QAAAAAAAAAAAAAACoZRuWLy/ank3T6OzoyGvbuGJFZJJk0GNnL1tWhsgAgMmq2PhjNGOPCOMPpp6qK4Iej5kzZ8Z//ud/xt/+7d/GNddcE2maVjokAKDM7IQEAAAAAAAAAAAAAACAyWdSFUFHRDQ1NcX3v//9uOSSS+Lzn/98pcMBAAAAAACgSriqNgAAAFDN0jSNbDab15bJZCIZYj8FAECljffYi+MuAMCuTLoi6IiIJEli+fLlsXjx4kqHAgAAAAAAAOPWFBGnt7YOagMAAAAmj2w2G+3t7XltbW1t0dzcXKGIAAAAACprUhZB57z//e+vdAgAAAAAAAAwbkmSRKbSQQAAAAAAAAAATKCqLoJeu3ZtfOlLX4pbbrklHn744di6dWvMmjUrFi9eHEuWLIlvfOMblQ4RAAAAAAAAAAAAAACYJJoi4vTW1kFtAJOBHAdAranaIujly5fHP/zDP0RXV1d/W5qmsWXLlli7dm3cdtttiqABAAAAAAAAAACAikvTNLLZbF5bJpOJJEkqFBEATA3l+A1OkiQy4w0MoErJcQDUmqosgv7Upz4V//iP/xhpmo76uVdccUXsvffesXTp0thvv/3KEB0AAAAAAJW0Yfnyou3ZNI3Ojo68to0rVkSmyEkus5ctK0NkAAAAAExV2Ww22tvb89ra2tqiubm5QhEBwNTgNxgAACa3ukoHUOi+++6LSy+9tP/2YYcdFldffXX8+c9/jsceeyxOPvnkYZ+/efPmOPfcc+PAAw+M//iP/yh3uAAAAAAAAAAAABOqKSJOb23N+2uqdFAAAAAAAFBiVTcT9Oc///no6emJJEniRS96UVx//fWRyWT67582bdqwz7/44ovj4x//eEREfPe7340zzzyzrPECAAAAAAAAAABMpCRJIrPrhwFMSRuWLy/ank3T6OzoyGvbuGJFZJJk0GNnL1tWhsgAAAAAGK2qmwn6lltuiYi+HfVf/vKX8wqgR2LRokVx3HHHRZqmcdNNN5UjRAAAAAAAAAAAAAAAAAAAoIyqrgj60UcfjSRJYsmSJbH//vuPqY+TTjopIiKefPLJuP/++0sZHgAAAAAAAAAAAAAAAAAAUGZVVwTd1dUVEX0zOo/VYYcd1v//P/3pT+OOCQAAAAAAAAAAAAAAAAAAmDgNlQ6g0IIFC+KRRx6JTZs2jbmP+fPn9///0UcfLUVYAAAAAAAATEJNEXF6a+ugNgAAAAAAAAAAKqvqZoJ+3vOeF2maxurVqyObzY6pjxkzZvT/f/PmzaUKDQAAAAAAgEkmSZLIFPwlSVLpsAAAAAAAAAAApryqmwn69NNPjxtvvDGy2WxcffXV8cY3vnHUfWzbtq0MkQEAAAAA1WjD8uWD2rJpGp0dHXltG1esiMwQRW2zly0rQ2QAAAAAEU0RcXpr66C2apOm6aBJKzKZjIsEAdQ4+R0AAACoZVVXBH3eeefFBz/4wchms/HBD34wXvayl8W8efNG1cef/vSn/v/PmjWr1CECAAAAAAAAAACMSJIkkal0ECOQzWajvb09r62trS2am5srFBEApSC/AwAAALWsrtIBFHrOc54TF198caRpGk8++WS85CUviSeeeGJUfVx77bX9/z/ggANKHSIAAAAAQNVK0zR27NiR95emaaXDAgAAAAAAAAAAgFGpupmgIyIuv/zy+PnPfx533nlnrFq1Ko488shYvnx5vPrVr97lc//93/89fvnLX0ZERGNjYxx33HHlDhcAAAAAoGqY1QMAAAAAAIDJaMPy5YPasmkanR0deW0bV6yITJIMeuzsZcvKFBm1rikiTm9tHdTG2FieAEApVd1M0BERzc3Ncd1118UBBxwQaZrGunXr4jWveU0cfPDBsWbNmqLP2bZtW3zqU5+KCy64ICIikiSJs88+O6ZPnz5hcX/iE5+IJEkiSZJ4/etfX5I+b7755njrW98aS5cujblz50ZjY2PMmDEjDj744Dj//PPj2muvje7u7pK8FgAAAAAAAAAAAAAAwFSSJElkCv6SIoX0jIzlCQCUUlXOBB0R8dznPjd+97vfxd/+7d/Gz372s0jTNO655568xxxwwAExf/782Lp1a9xzzz3R1dUVaZpGRMS0adPiox/96ITFe88998QnPvGJkvW3cuXKePOb3xyrVq0adN/WrVtjzZo1sWbNmvj2t78d++yzT3zhC1+Il770pSV7fQAAAAAAAAAAAAAAAACgfJoi4vTW1kFtQJ+qnAk6Z86cOXH99dfH1772tVi0aFGkaRppmvZfAeaBBx6I//7v/47Vq1dHZ2dn//NaWlriO9/5Tuy3334TEueWLVvinHPOiW3btpWkv6uvvjqOP/74ogXQxTz44INx5plnxkc+8pGSvD4AAAAAAAAAAAAAAAAAUF5JkkSm4C9XPwlUeRF0zhve8IZ48MEH49/+7d/iJS95SbS0tPQXROf+IiLq6urirLPOiv/5n/+Js846a0Ji27FjR7S1tcUf//jHkvT3wx/+MC644ILo7u7Oa29qaopjjz02zjrrrDj66KOjqWnw9Rw+/OEPx//9v/+3JHEAAAAAAAAAAAAAAAAAALUlN7v0wD+zS1OrGiodwEg1NjbG+eefH+eff350d3fHmjVr4sEHH4xNmzZFQ0NDzJs3L4455piYNWvWhMW0devWeMUrXhG33HJLSfp78MEH4w1veEP09vb2t9XX18c//MM/xHve856YM2dOf/uTTz4ZV1xxRXz605/Oe/w//uM/xgtf+MI4+uijSxITAAAAAAAAAAAAAAAAAFAbkiSJTKWDgBKpmSLogRoaGuLQQw+NQw89tGIx3HXXXfHqV786/vSnP5Wsz/e9732xefPm/tt1dXXxgx/8INra2gY9dt68efHJT34yTjzxxDj77LP7Z47u7u6Ov//7v4+bb765ZHEBAAAAAAAAAAAAAAAAAMBEqqt0AGPV09MTH/7whyvy2t/85jfj2GOPLWkB9O233x4//OEP89ouvfTSogXQA7385S+PK6+8Mq/tlltuKdns1AAAAAAAAAAAAAAAAAAAMNHKVgT97//+7+XqOu6444446qij4mMf+1jZXqOYe+65J175ylfGhRdeGB0dHSXte8WKFXm3Z8+eHf/wD/8woue+4x3viMMPPzyv7V/+5V9KFhsAAAAAQC1oiojTW1vz/poqHRQAAAAAAAAAAABjUrYi6PPPPz9+/OMfl7TPnp6e+MhHPhLHHnts3HnnnSXtezhPPPFEvP3tb49DDjmk6Ht65zvfGSeffPKY++/p6Ykf/OAHeW2ve93rorW1dUTPT5Ik3vKWt+S13XDDDSUv1AYAAAAAqGZJkkSm4C9JkkqHBQAAAAAAAAAAwBiUrQi6q6srXvOa18QNN9xQkv7uvPPOOOaYY+KjH/1odHV1laTPkfrEJz4R//Iv/xLd3d157TNmzIh//dd/jc997nNRX18/5v5vu+222LhxY17by172slH1Ufj4jo6Oki17AKhFZv8CAAAAAAAAACDHuSQAk5P8DgAAk1vZiqAjIjo7O+Pss8+Om266acx99PT0xEc/+tE49thj44477og0Tati5o6XvvSlcdddd8Ub3vCGcff161//Ou92XV1dnHDCCaPqY/HixbHnnnvmtd16663jDQ0AapbZvwAAAAAAAAAAyHEuCcDkJL8DAMDkVtYi6CRJYseOHfHKV74yfvnLX476+bnZnz/ykY9EZ2fnoALo/fbbr5ThjsghhxwS1113XfzHf/xHPPe5zy1Jn3fddVfe7X333TdmzJgx6n4OPfTQvNsrV64cV1wAAAAAAAAAAAAAAAAAAFAJZSuCrq+vj4i+QuiOjo4466yz4ne/+92IntvT0xMf+9jHBs3+nCRJpGkadXV18b73vS/uvPPOcoU/yNFHHx3f/va344477oizzjqrpH2vWbMm7/aBBx44pn7233//vNv333//mGMCAAAAAAAAAAAAAAAAAIBKaShXx9/85jfjggsuiN7e3kiSJLZu3RpnnHFG3HTTTXH00UcP+bw//vGP8frXvz5WrVoVaZpGRPTP/pymaRx++OHxta99LY488shyhT7Ihz70oZgzZ07Z+l+3bl3e7cWLF4+pn4ULF+bdfvLJJ6OjoyNaW1vHHBsAAAAAAAAAAAAAAAAAAEy0ss0E/drXvja+853v5M0IvXnz5jj99NPjjjvuGPT43OzPxxxzTH8B9MDZn5uamuKf/umf4ve///2EFkBHRFkLoCMinnjiibzbCxYsGFM/8+bNG9T29NNPj6kvAAAAAAAAAAAAAAAAAAColLLNBB0Rcc4550R9fX289rWvje7u7kiSJDZs2BCnnXZa3HrrrfH85z8/InY9+/Mpp5wSV111VRx44IHlDLcitmzZEp2dnXltM2fOHFNfM2bMGNS2YcOGeO5znzum/gAAAACgVjVFxOmtrYPaAAAAAAAAAAAAgNpQ1iLoiIhXvepV8YMf/CDOPffc6OrqiiRJ4umnn47TTjst/uu//it+9KMfxcc//vHo6urqn/05oq/4eebMmfHP//zPcfHFF5c7zIrJZrOD2loLTs4cqWLP27Fjxy5fv1gMA23ZsiUaGhqipaUlent7Y9u2bYMekyvA7ujoiJ6enrz7mpubo7GxMTo7Owe9Vn19fbS2tkaaprF169ZB/U6bNi3q6upi+/bt0d3dnXdfJpOJpqam6OrqGvQ+6+rqYtq0af3xF2ptbY36+vrYsWNHdHV15d3X1NQUmUwmuru7Y/v27Xn3JUkS06dPj4iIrVu39hft57S0tERDQ0Nks9lBxe2NjY3R3NwcPT090dHRMSim3DLctm1b9Pb25t033DLc1bqZPn16JElSdN0Mtwxz6yai+DIcbt0MtwwHrptiyzC3bka7DAeum2LLMLduSr0Mc+tmuGU4ns/3eJbhcJ/v8SzDYutGjugjRzxrInPEtp3LoyFJIpMk0ZOmsaPgeRER0+rqIiKio7c3Cu+d0d0tR4QckSNHPGsy5Igc44g+csSz5Ig+ckQfOaKPHPGsyZQjcsslTdP+/2/durX/9SdLjtjW2xuNSRJNSRLdaRrZgmWURETrMNsEzTv3SZZyW6Nhy5aK5Yi6urq8dR7x7HqfLDliW29v1CdJNCdJ9KZpbB9m3Wzv7Y3egvsyO9f5VM8RxhF9jCOeNVlyRMTQyzCX33eVIxqSJLrSNDoL3ktdRMyOyFuG2wbE1ZIkUZcksaO3N/LXTAz7W9W0bVtejthW+J1LkqhPksimaXQXPDf3W1XYb8OWLXLEAHJEHzmij22NPnLEs+SIPnJEHzmiz1TOEdlsNm8d1NfXR0SMOEfkxnIj2R8x1BivZceOvGVYOD4c7thnbjzbmabRVTA+3NUybGjoO5Wsp6enf53n9inIEc8uIzliaueIQgPXzbZt2/LWT93O76pxxMTniG29vSPali6233dg/q5UjihcDtu3b4/m5uYxL8OIiN7e3rz3snXr1ujp6ZEjdrKt0Weq5IgI44icWhxHRMSYzhHsHycXLMNtvb1RHxHNdXVDHnNqTZJIkqTo/uSmncecBi7D3Pi9LiJacr8pvYXPHLA/OU2jp/Azms2WPUcUi2m02xoNOz8btZYjOnp7n/29L7IcRjSOkCP6P4djXYa54xoNA3KMccSzSjWOGMsxp8I8W3jMyTjCOCKiNscR1ZIjct/LpiSJxiGOH+9qHDGrtzdv3Qx8zFjPoWrYssW2xk5yRJ9y5YixKHsRdETEy1/+8rj22mvj1a9+dXR2dkaSJPH444/H0qVLI03TorM/v+xlL4sVK1bEokWLJiLEiilWgJw7oDBauYMuAxV+WQpdfvnl8ZGPfGTI+9M0jZUrV8aCBQvioIMOimw2GytXrhz0uBe+8IUREfGnP/0pNm/enHffQQcdFAsWLIgnn3wy7rvvvrz7Zs+eHYcffnj09PQU7ffEE0+MpqamuP/+++Ppp5/Ou2+//faL5z73ubFhw4a4++678+6bPn16HH300RER8Yc//GFQQjnmmGNi2rRp8fDDD8f69evz7ttzzz1j3333ja1bt8aqVavy7stkMnHCCSdERN8M5oXrb+nSpbHbbrvFY489Fo888kjefQsXLowlS5bEjh07Br3XJEniBS94QURErFmzZlBiOPjgg2P+/Pnx+OOPx5///Oe8+3bfffc49NBDo7u7u+gyPPnkk6OhoSHuu+++2LBhQ959BxxwQCxevDieeeaZWLNmTd59M2fOjCOPPDIiomi/xx13XLS0tMRDDz0Ujz/+eN59e++9d+y9996xefPmuPPOO/Pua2lpieOOOy4iIu64445Bn9EjjjgiZs2aFY8++misXbs2775FixbFgQceGB0dHYNiqq+vj1NOOSUiIu66665BPwaHHHJIzJ07N9avXx8PPvhg3n3z5s2L5z//+dHV1VX0vZ566qmRJEnce++9sXHjxrz7FRa/BgABAABJREFUlixZEgsXLoynnnoq7rnnnrz7dtttt/48V6zfE044ITKZTDzwwAPx5JNP5t23zz77xF577RUbN26M1atX593X2toaxx57bERE3H777YN+gI466qiYMWNGPPLII7Fu3bq8+/bYY4/Yf//9Y+vWrXH77bfn3dfY2BgnnXRSRESsXr160A/1YYcdFnPmzIn169fHQw89lHefHNFHjnjWROaI7TsHcAvq62OfxsbYkabxx4JBXX1EHNPcHBER93V1DdpR2bxxoxwRckSOHPGsyZAjcowj+sgRz5Ij+sgRfeSIPnLEsyZTjth9990jou/E1dznbNWqVdHQ0DCpcsT2zs7Yo6Eh9mhoiK29vfGnghzQnCSxdOeJXmu6uvJOAI6IeH5T3xzRpdzWaFm5smI54nnPe15ERN7zcut9suSI7Z2dMbe+PvZvbIzOIusmIuL4nevmz93dsbXgwMD+jY0xL2LK5wjjiD7GEc+aLDkiYuhxRC6/7ypHzK2vj6d7euKhggN1s+rqYlFEXo7YPiAHHZXJRF1EPNzdHRsK+t2roSEWNjTEpt7euK/gczZvzZq8HNFRkNcOa2qK1iSJx7q744mC5buooSH2bGiIjjSNuwc8r2XlSjliADmijxzRx7ZGHzniWXJEHzmijxzRZyrniO7u7rzvx+zZsyMiRpwjcuPDkeyPmJEk8Zfu7lhf8Nnf75FH8nLEwDHnro59LmlsjNn19fFkT088OmA827Jy5S5zRO77OPAierl9CnJEHzmiz1TOEYUGjiMee+yxvPyRK2gwjpj4HLG9szMObWqKaUkS67q74/GC/LGwvj72amyMjjSNuwpP6k6SOGpn/q5EjnjqqacGLd8///nPcfTRR485R8ybNy+6urryig9WrVoVu+22mxyxk22NPlMlR0QYR+TU4jhifkRkixwbqouIY3P7fbu6YltBvAc0Nsbu9fWDcsT2zs6YXVcXS5qaoiei6DGnozOZaIiIh7q7Y1PBft+9GxpifkRejsiN36fX1cUhO49DFut3aVNTNCdJrO3ujqcKPqMHrV9f9hwx2vMsi21rtOz8zNVajoiurjh85+/93Z2dgy5qOpJxhBzxbI64q7Nz0AUCRnNco2VAXMYRzyrVOGJzwXd9uP0RQ50f0bJypXHEAMYRfWpxHFEtOSI3Vti7oSGe09AQG3t74/6C3/NdjSN2z2bzcsTA/YdjPYeqZeVK2xo7yRF9ypUjCnPCSCTpWJ41Rj/72c/iVa96VX+SKVb8PH/+/Pjc5z4X55577kSFVRIvfOEL4xe/+EX/7QsvvDC+8Y1v7PJ5jzzySOy11155bVdddVW8+c1vHnUM//Vf/xV/8zd/k9f2y1/+sj+JFJObCXrevHmDrgIQ0XeFgaeeeqrmrgjgqiHPqvYrC7lCoauGyBF95Ig+Y8kRm666qu+9DnOV3ojhr1D4nHe9S44IOSJHjnjWZMgROcYRfeSIZ8kRfeSIPnJEHzniWZMpR/T09MQNN9yQNyvwGWec0T/zw2TJEZuuumrcM0HPveSSkm5rzLrooorOBP3DH/4w73m59T5ZcsSmq64a90zQ8y65ZMrnCOOIPsYRz5osOSJi6GWYy+/jmQl60Xvek7cMc31GjH0m6NkXX5yXIwb2GTG2maBnXXSRHDGAHNFHjuhjW6OPHPEsOaKPHNFHjugzlXNENpuNG264Ie/+V73qVZGm6YhyRG4sN56ZoOe+7W15y7BwfDiWmaBnXXTRiGaC/tGPfpQ3E3Run4Ic8ewykiOmdo4oVDgT9MD8UVdXF2effXY0NDQYR0xwjth01VXjngl69rJlFckRmzdvjh//+Md595111lkxe/bsMS/D3t7euPbaa/PeyxlnnBEtLS1yxE62NfpMlRwRYRyRU4vjiO1f+tK4ZoKe9ra35S3DTVddNe6ZoOdfckneMsyN38czE/S8t7+97Dli/Wc/Oyim0W5rzLroooiovRyx+aqrxj0T9Mx3vlOO2Pk5XHvllYP6Hc1xjdznKMI4YqBSjSM2fuUr+e91DOPkwmNOxhHGERG1OY6olhyRGyuMZyboRcuW5a2bgfsPx3oO1ayLLrKtsZMc0adcOWLu3LlD1rEWm3A4YoKLoCP6CnVf+cpX5gWfpmkkSRLnn39+fOYzn+m/gmotGWsR9Pr16wfNdr1ixYp4y1veMuoYrr/++jjzzDPz2v7nf/6n/+oCw8lkMqP+8ABANdiwfPm4+5i9bNm4+wAAgGq0Y8eOaG9vz2tra2uL5p1X8J4syrFdMN4+K7mdMRXWu21BYKyq8TdjovoEAGBkxrtdXcvjw6mwTwHKyXeoetTydnU5Pkc+m8BkUupjeLU8fh+vWomzHKbyey+HWj62PhX4vEP1mcrjD4gYWx1rXbmDKvTiF784rrvuumhpaclrnzNnTvyf//N/arIAejxys+4MVGwljkTh1QGG6h8AAAAAAAAAAAAAAAAAAKrZhBdBR0T81V/9VfzHf/xHtLa2RkTfdN3PPPNMnHbaabF27dpKhFQxM2fOjCRJ8tqKTQ8+Elu2bBnUlpteHQAAAAAAAAAAAAAAAAAAakVFiqAjIl7wghfEz372s5g+fXpERKRpGg8//HD89V//dTz++OOVCmvCNTQ0xMyZM/PaNm7cOKa+ij1vwYIFY+oLAAAAAAAAAAAAAAAAAAAqpWG0T/irv/qrkgYwa9as2LJlSyRJEmmaxv333x/HHHNM7L///rt8bpIkcfPNN5c0nkpYtGhRbNq0qf/2WIvAC5/X3NwcM2bMGFdsAAAAAAAAAAAAAAAAAAAw0UZdBH3rrbdGkiQlDyRN0/5C6LVr18Zjjz02osdPBvvtt1+sWbOm//Yjjzwypn4efvjhQf0CAAAAAAAAAAAAAAAAAECtqat0ABF9MzrnCpoH/n+qeP7zn593+5577hlTP4XPK+wXAAAAAAAAAAAAAAAAAABqwahngo7om4WZ0jnmmGPybq9fvz7WrVsXixYtGnEfXV1dcccdd+S1HXnkkSWJDwAAAAAAAAAAAAAAAAAAJtKoi6AvvPDCcsQxpZ166qlRV1cXvb29/W0333xznH/++SPu41e/+lVks9m8ttNOO61kMQIAAAAAAAAAAAAAAAAAwEQZdRH017/+9XLEMaXNmzcvjjnmmPif//mf/rbvfe97oyqC/u53v5t3e+HChXHEEUeULEYAAAAAAAAAAAAAAAAAAJgodZUOgD4XXHBB3u0bbrghVq5cOaLnPvjgg/Htb387r+2Nb3xj1NVZvQAAAAAAAAAAAAAAAAAA1B5VslXi/PPPjzlz5vTfTtM0zjvvvHjqqaeGfV5HR0ecc845sWPHjv62lpaWeMtb3lK2WAEAAAAAAAAAAAAAAAAAoJwaKh0AfWbMmBGXXnppvPe97+1vu//+++O0006La665Jvbff/9Bz1m/fn2cd955g2aMvuSSS2KPPfYoe8wAAAAAVI8Ny5cPasumaXR2dOS1bVyxIjJJUrSP2cuWlSEyAAAAAAAAAAAAgNFTBF1F3v3ud0d7e3v8+te/7m+744474vDDD4/zzz8/zjzzzFi0aFE88cQTcfPNN8e//uu/xoYNG/L6OOKII+JDH/rQRIcOAAAAAAAAAAA1xUXlAAAAAACgutWN5sGXXnppbN26tVyxlE1HR0f87//9vysdxi7V19fHj3/84zjiiCPy2js6OuLLX/5yvPzlL4+jjz46XvrSl8YVV1wxqAB67733jvb29shkMhMZNgAAAAAAAAAAAAAAAAAAlNSoZoK+/PLL41//9V/jwx/+cFx00UVRVzeqGuqK+MY3vhGXXnpp/OUvf4mPf/zjlQ5nl+bMmRM33XRTXHjhhfHTn/50xM878cQT4/vf/37sscceZYwOAAAAAAAAAAAAgPHasHz5oLZsmkZnR0de28YVKyKTJEX7mL1sWRkiAwAAAKgeo65ifuKJJ+Jtb3tbHHzwwXHttdeWI6aS+N73vhfPf/7z401velOsX7++0uGMypw5c+K6666LH/3oR3HKKacMW2x+yCGHxFVXXRW/+tWvFEADAAAAAAAAAAAAAAAAADApjGom6LPPPjuuvfbaSJIk7r333jj33HPjsMMOiw996EPR1tZWrhhHbPv27fHtb387rrzyyrj33nsjIiJN04iIeOUrX1nW17711ltL3ucrXvGKeMUrXhFPPPFE/Pd//3esX78+nn766WhtbY2FCxfGscceG/vss0/JXxcAAAAAAAAAAAAAAAAAACppVEXQP/jBD+Lqq6+Od77znbFx48ZI0zTuuOOOePWrXx377LNPvOENb4gLLrggnvvc55Yr3qLuvPPO+PrXvx7/9m//Fps2beovfI6IaGlpiSuvvDIuvvjiCY2plObPnx8vf/nLKx0GAAAAAAAAAAAAAAAAAABMiLrRPuF1r3tdrF69ur8oN0mSSNM0HnjggfjQhz4U++yzT7z4xS+OFStWxAMPPFDygHP+8Ic/xEc+8pE4+OCD44gjjojPfe5z/YXZSZJERMTpp58ed955Z00XQAMAAAAAAADAZJemaezYsSPvb+AF0AEAAAAAAICpZ1QzQecsWrQofvSjH8WNN94Yy5Yti3vuuae/8Li3tzduueWWuOWWWyIi+ouijzvuuDjyyCPjec97XjQ1NY3q9TZv3hyrVq2KVatWxW9+85u45ZZb4plnnomI6D/omSRJf0H2nnvuGZ/+9Kfj1a9+9VjeHgAAAAAAAAAwgbLZbLS3t+e1tbW1RXNzc4UiAgAAAAAAACptTEXQOaeffnr88Y9/jBUrVsQ///M/x7p16/qLoXPFyQ888EB85Stfia985SsR0VesvMcee8Tee+8d8+fPj3nz5kVra2s0NTVFmqbR0dER27dvj6effjoeffTRePTRR+Pxxx/Pe92BV3se+HqLFi2KD37wg3HRRRdFY2PjeN4aAAAAAAAAAAAAAAAAAABQIeMqgo6IaGhoiHe+851x8cUXx1VXXRWf/vSn45FHHomIGFQQnfv/I488Eo8++ugu+x74vJzcjM+5+9M0jYMPPjje9a53xQUXXOAq0AAAAAAAAAAAAAAAAAAAUOPqStVRU1NTvP3tb48HHnggfvKTn8TLXvayqKur6y9kzhUvFytiHuqv8DlJkvTf19zcHOecc07ceOONsXr16vi7v/s7BdAAAAAAAAAAAAAAAAAAADAJjHsm6EJ1dXVx1llnxVlnnRWPP/54/OQnP4mf/vSncfPNN0dHR0feY3PF0MXkip0Hmj9/fpx66qnxyle+Ml7xilfEtGnTSh0+AAAAAAAAAAAAAAAAAABQYSUvgh5owYIFcdFFF8VFF10UPT09sXr16rjtttti9erV8dBDD8VDDz0UTz31VGzbti06OjoiSZKYPn16TJ8+PebMmRP77bdfHHDAAbFkyZI44YQTYsmSJeUMFwAAAAAAAAAAAAAAAAAAqAJlLYIeqL6+Pg4//PA4/PDDJ+olAQAAAAAAAAAAAAAAAACAGlRX6QAAAAAAAAAAAAAAAAAAAAAGmrCZoAEAAAAAAAAAAABq3Yblywe1ZdM0Ojs68to2rlgRmSQp2sfsZcvKEBkAAAAATC5mggYAAAAAAAAAAAAAAAAAAKqKImgAAAAAAAAAAAAAAAAAAKCqKIIGAAAAAAAAAAAAAAAAAACqSkO5Ov7oRz9aln7r6uoik8lEJpOJadOmxcKFC2Px4sVx0EEHRVNTU1leEwAAAAAAAAAAAACq2Yblywe1ZdM0Ojs68to2rlgRmSQp2sfsZcvKEBkAAADA2JStCPrDH/5wJEPsICmHhoaGWLp0aZx33nnxxje+MWbNmjVhrw0AAAAAAAAAAAAAAAAAAJROXblfIE3TCfnr6uqK//f//l+8733viwMPPDCuvfbacr81AAAAAAAAAAAAAAAAAACgDMpaBJ2maf//kyQp+lfMUI8dyV+apvHkk0/GueeeG5/73OfK+fYAAAAAAAAAAAAAAAAAAIAyaChXx29/+9sjIqK7uzu+8Y1vRGdnZ/99ueLoadOmxaGHHhpz586NmTNnRjabjc2bN8cjjzwS9913X/T29kZEDCqWHlhcPdDAwuo0TeM973lPHHjggfGSl7yk5O8PAAAAAAAAAAAAAAAAAAAoj7IVQX/+85+P7u7uOO+88yKbzfbP0tza2hqvf/3r401velMsXbp0yNmgOzo64sYbb4wvf/nL8Z//+Z/9z58/f37ceuutsWTJkujo6IhNmzbFY489Fr/5zW/iq1/9atx99939xdC9vb3xd3/3d3HPPfdES0tLud4qAAAAAAAAAAAAAAAAAABQQnXl7Pwd73hHtLe39xcwH3300bFq1ar4whe+EEccccSQBdAREa2trdHW1hY/+9nP4gc/+EHMmDEjkiSJJ554Ik477bT4y1/+EtOmTYtFixbFMcccE8uWLYs777wzPv7xj+f189hjj8W//uu/lvNtAgAAAAAAAAAAAAAAAAAAJVS2Iuibb745vvKVr/TfPuqoo+Lmm2+O/ffff9R9nX322fHjH/84GhsbI0mSWLduXbzjHe8Y9Li6urr44Ac/GJdddlmkadpffK0IGgAAAAAAAAAAAAAAAAAAakfZiqA/9rGPRUREmqaRyWTiu9/9bsyYMWPM/b3gBS+I97znPZGmaURE/OhHP4rf/e53RR/7wQ9+MPbZZ5/+26tWrYonnnhizK8NAAAAAAAAAAAAAAAAAABMnLIUQa9duzZ+9atfRZIkkSRJnHfeeWOaAbrQJZdcEvX19ZEkSUREfOc73yn6uIaGhjjvvPP6C6YjIu64445xvz4AAAAAAAAAAAAAAAAAAFB+ZSmC/n//7/9Fmqb9RchnnXVWSfqdN29eHHbYYf19/+IXvxjysccee2ze7QceeKAkMQAAAAAAAAAAQDVJ0zR27NiR9zdw8gAAAAAAAIBa1FCOTteuXZt3e6+99ipZ34sXL47bb789IiIee+yxIR+3aNGiiIj+WaM3bdpUshgAAAAAAAAAAKBaZLPZaG9vz2tra2uL5ubmCkUEAAAAAAAwfmWZCXrbtm15t7dv316Wvnfs2DHk4zKZTN7tnp6eksUAAAAAAAAAAAAAAAAAAACUT1mKoGfPnp13e/Xq1SXpN03TuPvuu/tnd16wYMGQjy2c+XnmzJkliQEAKL00TWPHjh15f2maVjosAAAAAAAAAAAAAAAAoEIaytHpwQcfHBHRX6z8rW99K97ylreMu99bbrklHn/88UiSJJIkicWLFw/52Lvuuisi+oqqkiSJ+fPnj/v1AYDyyGaz0d7entfW1tYWzc3NFYoIAAAAAAAAAAAAAAAAqKSyzAR91FFHRUtLS0T0FSH/93//d3zrW98aV59dXV3xvve9r7/PiIgXv/jFQz7+Jz/5Sd7tww47bFyvDwAAAAAAAAAAAAAAAAAATIyyFEG3trbGq171qv5ZmNM0jYsvvjj+67/+a0z99fT0xOte97q44447+meXjog455xzij7+N7/5Tdx44439j507d24sWbJkTK8NAAAAAAAAAAAAAAAAAABMrIZydfy///f/ju9///vR09MTSZLEjh074qUvfWm8733vi7//+7+P3XbbbUT9/Pa3v413vOMd/QXQucLqV7/61XHQQQcNevz1118fb3rTmyIi+h/7mte8ppRvDQAAAAAAAAAYgw3Llxdtz6ZpdHZ05LVtXLEiMgMulJ4ze9myMkQGAAAAAAAAVJuyFUEvWbIkLr300vjIRz4SSZJEkiTR09MTn/rUp+Jzn/tcnHXWWXHCCSfEoYceGnPmzInp06fH9u3bY8uWLfHggw/GqlWr4oYbbog//elPEfFsQXNExG677Raf+9zn8l7vd7/7XZx77rmxbt26vMc2NjbGO9/5znK9TQAAAABgnNI0jWw2m9eWyWT69/EBAAAAAAAAAAAAU0/ZiqAjIi677LK4995747vf/W5/IXSaprF9+/a45ppr4pprrhn2+WmaRkTkPXf27Nlx4403xoIFC/Ieu3Llynjsscf6H5/7973vfW8ccMABZXh3AAAAAEApZLPZaG9vz2tra2uL5ubmCkUEAAAAAAAAAAAAVFpZi6AjIr797W/HnnvuGZ/+9Kejt7e3v0A5V+A8nIEzvaRpGgcffHB873vfi0MOOWTQY++9996856RpGuedd1780z/9UyneBgAAAAAAAAAAwKSwYfnyQW3ZNI3Ojo68to0rVkRmwDlcObOXLStTZAB90jSNbDab15bJZPLOKwUAAABg8qsr9wskSRKXX355/PrXv44XvOAFkaZppGnaP7vzcH+5x86YMSM++tGPxu233160ADoi4r777ouIvh1f8+bNixUrVsTVV19d7rcHAAAAAAAAAAAAQAlls9lob2/P+yssigYAAABg8iv7TNA5xx9/fPz85z+PVatWxbe+9a248cYbY82aNUPOCD19+vQ47rjj4txzz43Xve510draOmz/Z511Vpx55plx+OGHx0knnRR1dWWv7wYAAAAAAAAAAAAAAAAAAMpgwoqgc5YuXRpLly6NK664IjZv3hz33ntvrFu3LrZu3RqNjY0xZ86cWLBgQRx88MGjKmR++9vfXsaoAQAAAAAAAAAAAAAAAACAiTLhRdADzZw5M44++uhKhgAAAAAAAAAAAAAAAAAAAFSZkU+1DAAAAAAAAAAAAAAAAAAAMAEqOhM0AAAAAAAAAAAwMhuWLy/ank3T6OzoyGvbuGJFZJJk0GNnL1tWhsgAAAAAAABKryJF0I888kj84he/iF/96lfx8MMPxzPPPBPPPPNMNDQ0RGtrayxYsCD23XffWLp0abzoRS+KAw44oBJhAgAAAAAAAAAAAAAAAAAAFTChRdC33nprXH755XHTTTfltadpmnc7KbgK7ZFHHhnvfe9747zzzit7jAAAAAAAAACTVZqmkc1m89oymcygY7QAAAAAAAAAUGkTUgTd0dERb37zm+P73/9+ROQXPSdJMuiAemFR9MqVK+N1r3tdXHXVVfGd73wnFixYUP6gAQAAAAAAACaZbDYb7e3teW1tbW3R3NxcoYgAAAAAAAAAoLi6cr/A+vXr49hjj43vf//7kaZppGnaX/icJEl/28C/gffnCqTTNI2f//zncfzxx8dDDz1U7rABAABgzNI0jR07duT9FV7wCwAAAAAAAAAAAACAoZV1Jujt27fHy1/+8rj77rsjIvIKmiMiMplMHHrooTF//vyYNWtWdHd3x6ZNm2L9+vWxZs2a6O7uHvS8hx9+OM4444y47bbbYsaMGeUMHwAAAMbErFoAAAAAAAAAAAAAAONT1iLod73rXbFy5cq8Iub6+vo499xz4+KLL44TTjghGhsbiz53x44d8atf/SquuuqqaG9vj97e3v6Zo++99954//vfH1/60pfKGT4AAAAAAAAAAAAAAAAAAFABdeXq+O67746vf/3reQXQ++67b/zmN7+Jq6++Ok499dQhC6AjIpqbm+PFL35x/Pu//3v88pe/jH322Scior8Q+qtf/WqsWbOmXOEDAAAAAAAAAAAAAAAAAAAVUrYi6Msvvzx6e3sjoq8Aeu+9945f/OIXceyxx466rxNOOCF+8YtfxJ577tnflqZpfOYznylZvAAAAAAAAAAAAABQKU0RcXpra95fU6WDAgAAAKigshRB9/b2xvXXX98/a3OSJPGtb30rFi9ePOY+Fy9eHN/61rf6+0vTNH74wx9GT09PCSMHAAAAAAAAAAAAgImXJElkCv6SJKl0WAAAAAAVU5Yi6N///vexYcOGiOjbIfOSl7wkTjrppHH3e/LJJ8cZZ5wRaZpGRMSGDRvijjvuGHe/AAAAAAAAAAAAAAAAAABA9ShLEfQDDzwQEdFfrPyqV72qZH0X9rV69eqS9Q0AAAAAI5WmaezYsSPvL7c/DAAAAAAAAAAAAIDxaShHp0888UTe7QMPPLBkfS9ZsiQi+maYjoh48sknS9Y3AFBeG5YvL9qeTdPo7OjIa9u4YkVkdv7eDzR72bIyRAYAAKOXzWajvb09r62trS2am5srFBEAAAAAAAAAAADA5FGWIuiOgiKmadOmlazv1tbWvNvd3d0l6xsAAAAAAAAAoJalaRrZbDavLZPJ9F9sHhheU0ScXnB+UlNlQgEAAAAAgCmvLEXQu+++e97t9evXl6zvv/zlLxHRd9AuSZKYO3duyfoGAAAAAAAAAKhl2Ww22tvb89ra2tqiubm5QhFBbUmSJDKVDgIAAAAAAIiIMhVBL1y4MCKi/yrCt956a5x55pkl6fvWW2/Nuz1//vyS9AsAAAAAAAAAALXI7MUA1KoNy5cXbc+maXR2dOS1bVyxIjI7z0sdaPayZWWIDAAAAIBqUFeOTo8//vj+Aug0TeO73/1udBTsjBqLjo6OuPrqq/v7jog49thjx90vAAAAAAAAAADUqiRJIlPwlxQpEgMAAAAAAKglZSmCnjt3bhx++OH9t9evXx+XXnrpuPu99NJLY/369f23DzvssFiwYMG4+wUAAAAAAAAAAAAAAKC6pWkaO3bsyPtL07TSYQEAUCYN5er4rW99a1x88cWRJEmkaRqf+9znYuHChfGBD3xgTP398z//c3z2s5/t7y9JkrjwwgtLHDUAAAAAAAAAAAAAAADVKJvNRnt7e15bW1tbNDc3Vyii2pamaWSz2by2TCYTSZJUKCIAgHxlmQk6IuLCCy+MPfbYIyKiv3D5H//xH+MVr3hF3HfffSPu55577omXv/zl8cEPfjCvffHixfG2t72tpDEDAAAAAAAAAAAAAADAVJArKh/4V1gUDQBQSWWbCbqpqSn+7d/+LV784hf3z9ycpmn89Kc/jZ/+9Kdx0kknxYte9KI48sgj4znPeU7MmjUr0jSNzZs3x1/+8pdYuXJl/PznP4/f/va3ERF5fdTV1cXnP//5aGpqKlf4AAAAAAAAAMAEaYqI01tbB7UBAAAAAAAAU1fZiqAjIl70ohfF5ZdfHn//938fSZL0FzFHRPzmN7+J3/zmN7vsI/f4JEn62z7+8Y/HK17xivIEDQAAAAAAAABMqCRJIlPpIAAAgBFJ03TQDJGZTCbvXF8AAACAUihrEXRExPvf//6YO3duXHzxxdHd3Z23gyNX4DyUXOF07rGNjY3xqU99Kt797neXNeZKu+yyy+Kuu+4adz9f//rXY8aMGSWICAAAAAAoh/GeKLZh+fJBbdk0jc6Ojry2jStWRKZIn7OXLRtxrAAAQPUZ7zZBhO0CAABGL5vNRnt7e15bW1tbNDc3VygiAACA4lzECWpf2YugIyLe8IY3xKGHHhof/OAH46abboqI/ALn4eQKpU866aS48sor45hjjilrrNXgy1/+cjz++OPj7udLX/qSImgAAAAAqGJOFAMAAAAAAAAAgPJwbg7Uvgkpgo6IOProo+M///M/47e//W18//vfj1tuuWXY2Y6TJIklS5bEqaeeGm984xvj2GOPnahQK2rdunUlKYAGAAAAAAAAACiFWpkpo1biBGBibVi+fNx9zF62bNx9AAAAALXFPgWoDhNWBJ1z4oknxoknnhgREU8//XSsXbs2nn766Xj66aejt7c35syZE7Nnz45999035syZM9HhVdyqVasqHQIAI+AECgAAAAAAAKaKWpkpo1biBABgMOdjAQAATG7jLSpXUD51TXgR9EC777577L777pUMoeoUFkGfdtpp8V//9V+VCQaAITmBAgAApo6hdr5m0zQ6Ozry2jauWBGZIifj2AELAAAAAAAwNOdjAUD5FTv/oVbOfXDBFACYuipaBM1gt99+e97tI444okKRAAAAAAAAAAAAAAAAQGW5YAoATF2KoKtM4UzQiqABAAAAGKumiDi9tXVQGwAAAAAAMDU4VgBALRvvzMURlZ29GACA8VMEXUW2bNkSf/7zn/PaFEEDMB5pmkY2m81ry2QykQyxowcAAJhckiSJTKWDAAAAJh3HHwAAoHY4VgAAAADUslEXQb/xjW8sRxxjkiRJfO1rX6t0GCVzxx13RJqm/benTZsWBx54YAUjAqDWZbPZaG9vz2tra2uL5ubmCkUEAAAAfRTOAFSeXAyMleMP1c1MfwBQGX6DAagk+/oAACilDcuXj7uP2cuWjbsPiBhDEfQ3vvGNqtgYStN00hVB33777Xm3DzvssKirq6tQNAAAAOzKUDt5smkanR0deW0bV6yITJHtaTt5AJiqFM4AVJ5cDDA5mekPACrDbzCTVbFjoqM5HhrhmChMBPv6AICpzvmcMHmNugg6Z+CMxROtGoqwy2HVqlV5t4844ojKBAIAAAAAAAAAAAAAZaCwGgAYiiJGAKDQmIugK6mSBdjlVDgTtCJoAKguaZpGNpvNa8tkMpP2Ai0AAAAAAAAAAAzNuSQAQK1riojTW1sHtQEAVItRF0Gfeuqpds6UQXd3d9x99915bbki6Ntvvz2+973vxa9//eu4//77Y8OGDTFr1qx4znOeE8cdd1ycddZZceaZZ0ZjY2MlQgeAKSObzUZ7e3teW1tbWzQ3N1coIgAAAACA4syWAQAA1LJaKcZxLgkAUOuSJIlMpYMAABjGqIugb7311jKEwd133513NcCGhobYvHlznHTSSfHb3/520OOfeuqpeOqpp2L16tXxta99Lfbbb7+4/PLL45xzzpnIsAEAAACAESpWiKQICQCAgcwiBwD5hrqwy0jZnwK1SzEOAAAAABFjKIKmPG6//fa82729vfFXf/VXI37+n//85zj33HPj4osvji984QvR0GDVAlA7auXqvQAAAAAAlN9ULgQ2ixzVYLwXcIpQdAgAAAAAAEBpqJStEqtWrcq73dvbm3d79uzZsd9++8XChQtjw4YNcc8998STTz45qJ8vf/nLsW7duvjRj34UdXV15QwZAErG1XsBAAAAAMhRCAwAAAAAAABARBUUQT/yyCOD2vbcc88KRFJZhTNB55x44onxgQ98IM4666yor6/vb0/TNH73u9/FRz/60bjxxhvznnPdddfF//k//yf+6Z/+qawxAwCM1VSeyQUAAAAYO/sUAGDy8LsOAAAAjEVTRJze2jqojcmtVta7fV4wPr5DVIMNy5eP6/mzly0rSRw8q+JF0HvvvXdeIkqSJLq7uysYUWXccccdg9o+9KEPxWWXXVZ0RuckSeLEE0+Mn/3sZ/F//+//jQ984AORpmn//Zdffnmcc845sXTp0mFfN5vNDvpxKLRly5ZoaGiIlpaW6O3tjW3btg16zIwZMyIioqOjI3p6evLua25ujsbGxujs7Bz0WvX19dHa2hppmsbWrVsH9Ttt2rSoq6uL7du3D/pcZDKZaGpqiq6urtixY0fefXV1dTFt2rT++Au1trZGfX197NixI7q6uvLua2pqikwmE93d3bF9+/a8+5IkienTp0dExNatW/OWeURES0tLNDQ0RDabjc7Ozrz7Ghsbo7m5OXp6eqKjo2NQTLlluG3btkEzgQ+3DHe1bqZPnx5JkhRdN8Mtw9y6iSi+DIdbN8Mtw4HrptgyzK2b0S7Dgeum2DLMrZtSL8PcuhluGY7n8z2eZTjc53s8y7DYupmqOaLwNbdt29Y/C0W15IhcjGma9i/7rVu39r+vic4R23p7ozFJoilJojtNI1uwjJKIaN35u9fR2xv590Y07xwzDFyG23Yuj4YkiUySRE+axo608JkR04bpd0Z394hyxNatWwet99x6liNGlyOy2WzccMMN/fdHRJx++unR2NiY99xazhHGEcYREcYROZN5HLGt8DuXJFGfJJFN0+guWL6daRqZIr+BDVu2yBEDyBF95Ig+1ZIjBn7XB45nt/X25n3XB+5qL8wPDVu2lH8cUST3jHac3DDgezmROSKbzUZ3d3ckSdJ/IcCB2y798dbQtkbDli2DcsTAz0V9kkRzkkRvkfW2rbc3murqIkmS2N7bG70D+ozIzxGFn7W6iKhLkr7twII+u5MkWpIk6pIkdqRp9KRp3jqf6ByRW++5bYLu7u5B632oHLGttzdvGW4fZt0MXIb973XnOretYRwRYRwxUC2MIwbuU6irq4u6urp46UtfOuhYylDLMJc3d5UjGpIkutI0OgveS11EzI7IW4YDc3F/nu3tjfw1E8P+VjVt2zbmbY3cb9VYtjVyx+h6enr678vlYjmiTy3niGKf76ad67w3TfPu29bbG71JEi11dZGmaXTsfJ8DxwoTmSMKx4e579zAHDIZtjWKLcOurq5B93V0dPQff6iWcURuuQx1/GG4HNGdptGQJNGZptFV8Jr1EdFcVzfkGK81SeSIyM8Rhb8Zuxon55bhsNsaRX4Dc78/A7c1ctsZETGmbY3c7/rAbYIzzjgjMpnMoGU40nFELn9EPHv8Ydu2bYOeW+kcsWXLlkGvO3v27Kivr99ljihc5wO3eQvviyg+jsitH9safcusLiJahlmGhZ/vvPe68zswcBnm+hjJ/oihxngtO3bkLcPCuIY79pkbzxbm2YbC83+KvNfc9Aw9adrfb+673pQk0ThgnDzwe17ObY2ckX6++99vbp/OJN1nOZD9EX2GWzfbenuL/gb2v9edn+9i22sDc8TAZZj7TO4qRwy3z3L2zv/X2rZGqfdH9KbpmJdhLs8WLsNtvb0jyxFF9vvm/bYOWIabrroqIgbn2WyaRsfO70gSfeOxZ/7lXwZ9ziIi9njPeyLi2RwxMLftan9E4fZa/3vZsiUvRxTmy5Euw4HPy+X4/s9hkWWYe3Sx8WGx38CBvxstLS0REYP6TdM0XtjSkrduugaMOSPyfwMbCvKa/RF9JluOqIV9lgNVehxRuIy2bt0aTU1Nk2ocERFjOkewP38XLMNtvb0j3h8x3P62gcswl1PHs63Rms2WPUcUi2m02xq5XFzOHBERRX8DI/KXYUeaRgx4zMDfwMLPcEdv76i3pXNqfVuj8P2O9rhGbp0P/ByOdRnm+h34mz6wtmi4z2Gu3+6I/vU+cIxXLG9N1P6IYseyzjrrrEHPm6hxxFiOORXm2cJjTsYRk3McUS37I3p7e+P666+P3t7e/mWU22+8q3FE7vjDeLY1CtfNtt7eIfe3RYzsuEZE/rrJfS9Huj+iWJ6d1ds7ovPbRnMO1cDz2wrPc4oY2zlUuRzfnyOKLcNRHNcYajuw1DmiM01HvS3dH9POdS5HDJ0jxqLiRdARMSjpTDUbN26MpUuXxgMPPBCPPfZY9PT0xPvf//74yEc+MqLnv+9974sNGzbEJz7xif62NE3jsssuix//+MfDPvfyyy8f9nXSNI2VK1fGggUL4qCDDopsNhsrV64c9LgXvvCFERHxpz/9KTZv3px330EHHRQLFiyIJ598Mu677768+2bPnh2HH3549PT0FO33xBNPjKamprj//vvj6aefzrtvv/32i+c+97mxYcOGuPvuu/Pumz59ehx99NEREfGHP/xh0GfsmGOOiWnTpsXDDz8c69evz7tvzz33jH333Te2bt0aq1atyrsvk8nECSecEBERf/zjHwd9uZcuXRq77bZbPPbYY4NmOV+4cGEsWbIkduzYMei9JkkSL3jBCyIiYs2aNYMSw8EHHxzz58+Pxx9/PP785z/n3bf77rvHoYceGt3d3UWX4cknnxwNDQ1x3333xYYNG/LuO+CAA2Lx4sXxzDPPxJo1a/LumzlzZhx55JEREUX7Pe6446KlpSUeeuihePzxx/Pu23vvvWPvvfeOzZs3x5133pl3X0tLSxx33HER0Vf8X5jQjzjiiJg1a1Y8+uijsXbt2rz7Fi1aFAceeGB0dHQMiqm+vj5OOeWUiIi46667Bv0YHHLIITF37txYv359PPjgg3n3zZs3L57//OdHV1dX0fd66qmnRpIkce+998bGjRvz7luyZEksXLgwnnrqqbjnnnvy7tttt91i6dKl/d+jQieccEJkMpl44IEH4sknn8y7b5999om99torNm7cGKtXr867r7W1NY499tiI6JtFvvAH6KijjooZM2bEI488EuvWrcu7b4899oj9998/tm7dOmgG+sbGxjjppJMiImL16tWDBvOHHXZYzJkzJ9avXx8PPfRQ3n3VniPuuuuuvOU0ffr0OO644yJJkjHniG3btg36PNx1111x6qmnRkT15IiZM2dGRF8+z8W7atWq/pM+JjpHbO/sjD0aGmKPhobY2tsbfyrIAc1JEkt3ntiypqtr0AD3+U1912wbmCO27xzALaivj30aG2NHmsYfCwZ19RFxzM4TxO7r6ho0OG7euHFEOWLVqlWD1nvu8yNHjC5HdHd39y+vuXPnRkTEfffdN6hf44g+xhF9jCOedfzxx0dE329r7vNdX18fSZJMihwxUKXHEbvKER0FvzmHNTVFa5LE+u7u2FKwA+KJnp6YUVcXHWkadw94XsvKlXLEAHJEH+OIPtWSI7YP+M7u1dAQCxsaYlNvb9zX2RkL6uv772utq+u/yvBdnZ15B8BbVq4s+zji8Z6eWFewM3F+fX3s29gY2SLj5LqIOHbnOPnPXV2xLU2jZcDymMgckRsfNjY2xqxZsyIif9slp5a2NVpWrhyUIwZ+lubU1cWBTU3RHTHoN2NNZ2ec0NwcSUQ82N0dm3MnVO5c1gNzRGFMM+vqYr+dJ4AM7HdNZ2fUJ0kckclEJiIe6eqKZ3p789b5ROeI7u7u2Lx5c8yZM6cv3i1bBq33oXLE9s7OmFtfH/s3NkZnkXUTEXF87vPd3R1bC5bx/o2NMS/CtoZxREQYRwxUC+OIgfsUZs6cGU1NTfH4448P6neocUQuF+8qR8ytr4+ne3rioYLf1ll1dbEoIi9HDMzvR2UyURcRD3d3x4aCfvPGEQWfs3lr1oxoW+Ox7u54omD5LmpoiD0bGsa0rXHQQQdFRN8B2Nw4LZeL5Yg+tZwjBo4jcvZtbIxZdXXRFX0nIOSs6eyM2fX1cXBTU6QR/b+tA8cKE5kjct/1lpaWmDZtWnR3dw8aJ0yGbY2BcuOIjRs3Dsrt9957b//+oGoZR+y+++4R0ZcPC48/7CpH7NHbG7vvzLMPF+TZ2XV1saSpKXoiio7xjs5koiFCjhiQI+4uWE65bY2uKL4Mj81kdrmtsaG3Nx4oeC+5E7Uint3WyG1nRMSYtjVyF0LabbfdIiJi8+bNg77rox1H5PJHXV1d/7bGmjVrBp18U+kccdtttw36nF544YUxc+bMXW5rFK7XaUkSh+7c5i3cHxFRfByRWz+7yhHHH398ZLPZ+MMf/tB/UlVuX/Rk2dbY3tkZ0+vq4pCd+waKfW+WNjVFc5LE2u7ueKrgd2yPhoZYEJGXI3Ljw5Hsj5iRJPGX7u5YX9Dvfo88kpcjBo45d3Xsc0ljY8yur48ne3ri0QGf/ZaVK/PGEcXe6+E7l0PHgBNFc9/1fRsbY359fX+OGPg9L+e2xgE7/393Z+egE/IPbWqKaUkS67q74/GCZbiwvj72amyctPssB7I/os9wOWJ7Z2f/OOKh7u7YVDBO3ruhIZ7T0BAbe3vj/oLfwIE5otj25a5yxHD7LBfv/H+tbWuUen/E8yLyxhEDPbehIRY3NMSW3t64p/CiJkkSh+/Ms4XbGts7O0eUIzrSNO4qLA5LkjhqZ78Dc0RunT+vsTF2q6+PJ3p6Ym13d1+RzYAT2KclSXRGX/4stMfOf3M5YmB+39X+iIOGGCe3rFyZlyPWFtw/3P6IocYRuRyfyxHF9kcsrK+P01tb+9bNzte8t7MzYufJ9kfu7PdPXV3RWXD8ITe5z3DHNTrSNO4tiLfwuEZvwedposYRAy8GNWPGjDj88MMjk8lMum2NaskRtbDPcqBKjyMKl/2qVavi1FNPnVTjiPkRIz72OdABjY2xe339oByxvbNzxPsjhhpHzI/I29bI5ffxbGsctH592XPEaM+zLLatkcvv5cwRe0Xk7bPMe68F+yMGGjiOuKswpq6u/nHEVNvW2F6wHEd7XCO3zgfmiJHuj8gpPK4xcJyQyWTieTv/nxtHDHRwU1PMTJJdnh+xuoL7IwYey5o2bVq0tLTEhg0b4oEHHsh73kTts9xcsM6H2x8x1PkRLStXGkcMMFnHEdWyP+I5z3lORPQdf9i0aVNEPHv8YVfjiH3SdJc5YlfbGoU5YntnZ/84YqzHNSLyj2vkcvFI90cU63f3bDYvRwzM72M9h6pl5cq8ccR9Ba87lnOocjk+lyMK91lGjO64RlfB57RcOWJuT8+I9kcMNY6ICDlimBwxllriJK1wBXLdzhlNIvreQLLzqjhTVVdXVzz88MOx7777Fp0Beig9PT1x4IEH5g2MkiSJv/zlLzF//vwhn5ebCXrevHmDrgIQ0XeFgaeeeqrmrghQrVcfq5UrHUe4QuFArizUp5avGrJp06b+K2rlnHPOOdHc3DzmHLF169Zob2/Pu++lL31p/0k/1ZIjuru742c/+1nezveBV9Cf6Byx6aqrxj0729xLLslbhrkr7Y5nJujnvOtdI8oRzzzzzKDP0qtf/epoaWmRI6pgJug0TfNeu7W1NVpaWmLHjh3GEcYRk24cUV9fHz/+8Y/zZurK5ffJkCMGKhxHDPyuZzKZaGxsjCRJBvU7Udsaud+hnNyVMjf39sZNBcvpxa2tMaOubtBv4KyLLpIjBpAj+hhH9KmWbY2B3/WxzJgQ0fddL/c44i+f+cy4Z4KeddFF/fdN9EzQN9xwQ95M0C9+8YvzZv+KqK1tjVkXXTQoRwz8LOWuYrq9tzduKPjevLClJWYXmQk6t34G5ojHP//5vOfmZoL+2bZteTvZc1e0Lbyi/MB1XomZoHc169tQOWLTVVeNeyboeZdcYp+lcUREGEcMVAvjiPHOBJ3LxeOZCXrRe96TtwwH5vexzgQ9++KLR7StMZqZoEeyrZEkSVx33XVFty/liD61nCPWXXll0ZlpeiPihm3b8u57YUtLtCSDZ4IeOFaY6JmgB44P0zSNv/mbv8kbJ0yGbY1iy3DLli3xox/9KO++M888M+/CMYUqNRP0DTfcMOTxh+FyxI6vfnXcM0Fn/u7v5IidOeKJL3wh/73uYpxcbPaqwm2NJz7zmaIzQf9ix468mf5y2xkRg2evGsm2xnhngt721a8O2l7Lpmncun17/yyMERGnNjf3z9bbH9PObYJK5Yinn3560DGns88+O1pbW3e5rVG4HTiWmaBz62dXOaKhoSHa29vz4smto8myrbHpqqvGPRP0gksuyVuGubHceGaCnvu2t+Utw8Lx4Vhmgp510UV5y3Dd8uWD3mt9RPzn9u15M0HnvuuFM0EP/J6Xc1ujc+d7H+vMYjPf+c5Juc9yIPsj+gy3bjZdddW4Z4KevWxZ3jLMfS/HMxP04p2zAtfatkap90d0fvWr454JuvHNb85bhpuuumrcM0HPXrZsxDNB31owE/SLW1pGNBP0wPw+1pmgZ110UV6OeHrFijEtw4F5Npfjc5/D4Y4/jHSf/MDfjZaWltjyhS+Met1E5P8GzhzQZ8TEjSMG7p/Kbbe2tbUNyqMRtb2tUS05ohb2WQ5UyXHE9u3b45prrsm774wzzog5c+ZMqnHE9i99aVwzQU9729vyluGmq64a90zQ8y+5JG8Z5vL7eLY15r397WXPEes/+9lBMY12WyOX38uZI7Jf+cqIZoIebhzR/OY35923+aqrxj0TdK1uaxRuX472uEZunQ/8HK698spB8Y7muMbAcUKSJNH11a/2vddhPoe7GkdkCtZ5xNSdCXrjV76S/17HME4uPOZkHDH5xhHVtD9iPDNB544/jGdbo+mii/LWzaarrhr3TNBzLrkkb93kcvF4ZoJetGzZuM9vK3au08BxxJNf/GLec8dyDlUux+c+349/5jPjmgl6xhDbgaXOER1f/eq4ZoKee8klcsQwOWLu3LlD1rEWxtD/Hou2UjGNjY2x//77j/p59fX18a53vSuWLVvW35amadx0003xv/7X/xryebkiieHkPugRfT9EA28Xyg3Cimlqaoqmpqai9yVJMmy/LS0tQ97X2Ng4qGBqoOH6bW5ujuadV5oo1NDQMOxzc4mlmOGWa319/bD95n7oixluGY5n3YxnGQ63bizDPuP5fI9nGQ73+R7PMhxu3VRrjpg+ffqg2cNyxpMjCvscuNyq5fOdGyzkTlLIxVb4viYqR3QPOBm1YefGwFBa6+qGvG/gMuwueFx90ndV3dH0m1s2u8oRxT5LuYu5yBF9RpojGhsbBy3L1tbWIWMaSY7YsWNH/Md//EfefW1tbcYROxlH9Km1ZThUjsjl91yRWMTg/F7LOaKY3DIc6rs+1HPLva1R+DuUkynyO9e083bhb2BhfFPl8x0hR+QYR/Sp5m2NYt/1XY1npxU8Z+DrlG0csXNHczEjHScXe+1Sf743LF8ehbtau9M0enfu2M3tZu3+1rf6T1jP2bTz39kD9oFFVOe2xsDlkluGxT5LdUXinTbgwpEtA55TuKwbGxsHfdYi+k76T5Ikb+fvtLq6vM9Hc5JEDPEdmKgcUbhd0NDQUHSbNWJwjhi4LOt2sW5ahlnn9ln2qbXfwAjjiJypOI4otk8hk8kM2W/hMizMxcPliMadB52LGbgMi+X35mH6LfZbNfAzsqttjaF+78eyrTGS7cta+3xHyBE5Q32+s2kadUkSA+8dOFZIBvy2Fut/InJE4Xc9d9B/qO96rW5rFDPUvtOcahlHjPT4Q7F1073z89W08yScYnY1xpMj+jQ1NRXdJogY3Th50LZGkd/A3Ek+A7c1CrczIka3rTGabYJin+/cZ2ng9lpDmg76nW0pEmdOpXJEsWNOuYu67CpHDLXOIwbvjxho4Dii8H0N9fnOfdcHxlq4jqrxN3A0OaJw3DXcMsx9vosZuAyLjeWG3R9RZIyXW8a5ZTjU+HC4fgvzbOH5P0PtU4iIvH0yhd/1XI4otg7Ksa2ROxVupJ/vQpN1n2Ux9kf0KbZuBn6HhtsO3NW+xeG2L4fNEbvotxaW4UCl3h+xYeeyKeUyHLh+xrPvfOAyLFznuTxbbPxRl/RdkHIouWVYLL/van9EYbwDl2lLS8uQ+XI0xzUK19No9kcUGu74w3iPawz1OS3357vYdlvE5NvWqJYckVPN+yyLqdQ4ovCzOX369BFva9TKOGJ7jO0cwZzCZViqY04Dl2Gx/D7abY3cey9njhguppFuaxTGVo4ckY3iv4ED7WocMdz4sNa2NVpaWooWmEaMbFtjqO3LkR7XKBbbWJdhrt/CPjfs/He029I59bv4TSn3b2CxsULuAgRDKedvYNcYjjkV5tnC1zCO6DPZxhHVsj8it08ydxGBiOLHH4qtm9w+41JtB0bk/2aU6rhGYS4e7XloEYP3J4/l/LbhznXKZDJD5vfRjMUK1/94lmHLMJ//UueI3GdpLOsmR47os6scMVKKoCeRv/mbvxnUdttttw1bBA0AAAAAAAAAAAAAAEB1y2az0d7entfW1tY2bIEtAECtUwQ9iRx00EH9U7jnPP744xWMCAAAAMYnTdNBV7DNZDL9M6QyOpYnAAAAUAkbli8f1JZN0+js6Mhr27hixZAzdMxetqwMkQEAAADA6BXb3xUxun1e9ncxlfkOAaOhCHqSmTNnTl7h89NPP13BaAAAAGB8pvIVbMtRsDyVlycAAACj5yQkAGA4Q40VRsNYgVrXFBGnt7YOamNyGO/FfOQ4AAAAGD9F0JNMT09P3u1p06ZVKBIAAMhn9lFgMlOwDABQemaMBAAAAKpdkiSRqXQQwJRj3ykAADCVKIKuQl1dXdHY2Djq56VpGhs2bMhrmzt3bqnCAgCAcVHMB0xmchwAAAAwmZnhEAAAAAAAgEpQBF0FXv/618ddd90VTz75ZDzxxBNxyCGHxG233Tbqfu66665BM0EvWbKkVGECAIyJK48CAMDQFBIAAAC1wAyHVLM0TSObzea1ZTKZSIY47gQAAAAAANQORdBVYO3atfH73/++//Ydd9wR27Zti2nTpo2qn1tuuWVQ2ymnnDLu+AAAAACA8lBIAAAATFUuCkWpZLPZaG9vz2tra2uL5ubmCkUEAAAA4zfeCWhMPgMATBaKoKvAUUcdFTfffHP/7c7Ozmhvb4+//du/HXEfaZrGF7/4xby2hQsXxlFHHVWyOAEAqE7lmOHArAkAAAAAAJSTi0IBAFCLXMwHABiOsQKTUbGLMozWSC/M4DsEFFMVRdBpmlY6hIp6zWteE5/61Kfy2j75yU/Ga1/72qivrx9RH5///Ofj3nvvzWt729veFg0NVbGKAQAoo3LMcGDWBICJNd6r90YM3lHsisAAAAAAlWcfDQDA5OJiPgDAcIwVYHx8h4BiKl4h+/Wvf73SIVTckUceGUcddVSsXLmyv+2uu+6KSy+9ND75yU/u8vk///nP4wMf+EBe27x58+Ktb31ryWMFAAAAAAAAAACAcpjI2aUAAAAAgOpX8SLoCy+8sNIhVIXPfvazccopp+TNiv3P//zP0dnZGZ/85Cejqalp0HPSNI2vfe1r8Y53vCOy2WzefV/84hdj9913L3vcAAAAAAAAE6UpIk5vbR3UBgAAAAAAAADA5FPxImj6nHTSSfEP//APcfnll+e1f+Yzn4lrrrkm3vSmN8VJJ50Uu+++ezzzzDPxhz/8Ia6++uq44447BvX1lre8Jc4555yJCh2AKSZN00EX38hkMpEkSYUiAgAmi2KzO2TTNDo7OvLaNq5YEZkhxh5mdwAAmNySJIlMpYMAAAAAAAAAAGBCKIKuIp/4xCfi6aefjq985St57Y8++mh8+MMfHlEfr3/96+MLX/hCGaIDgD7ZbDba29vz2tra2qK5ublCEQEATCzF2gAAAAAAAECpmJQCmMzkuNJqiojTW1sHtQEATGaKoKvMl7/85TjqqKNi2bJlsX379hE/r7W1NS6//PJ417veVcboAMrPzg5gJBSfAcDYOBgGAAAAAAAA1cWkFMBkJseVVpIkkal0EAAAE0wRdBX6u7/7u3jFK14Rn/3sZ+Pf/u3fYt26dUM+dv78+XH++efHe9/73li4cOEERglQHnZ2wNSgAAuY7OQ5SqEcnyMHwwAAAErHhV0BAAAAAAAAyksRdJVasGBBfOITn4hPfOITcc8998Ttt98eTz31VGzcuDGam5tj4cKFceihh8ahhx7qIDoAUHMUYAGTnTxHKfgcAQBQShuWLx/Ulk3T6OzoyGvbuGJFZIoce5q9bFmZIoPaNd4Lu/peQum5OCEAAAAAAMDkogi6BixZsiSWLFlS6TAAAGBEip28GeEETgAAAAAAystF5QAAAAAAACYXRdAAAAwrTdPIZrN5bZlMJpIihasAAKVg/AGTi4vkAABMPmbbBQAAAAAAACaCImgAgBo1VCHBaIykkCCbzUZ7e3teW1tbWzQ3N4/79Rm9Yutd8QgAk43xBwAAQHUz2y4AAABUFxcsAwAAJitF0AAAAAAAUMPSNI1sNpvXlslkIilyYSQAAKDyFCcAAExdLn5PubhgGQAAMFkpggYAAAAYJyeuAlBJ2Ww22tvb89ra2tqiubm5QhEBQPVx0RCgmihOAAAAAACA8nBccPJRBA0AAABUrVopLnbiKgAAQHVz0RAAAAAAAACY/BwXnHwUQQMAAABVS3ExAFSGq+ICAMDUsWH58qLt2TSNzo6OvLaNK1ZEpsh2wexly8oQGQAAAAAAMNUpggYAoF+xk1xGc4JLhJNcAIDqpJgPYHRcFRdg8mqKiNNbWwe1VYp9kgAAAAAAAAAMRRE0AABMYWZ3qH5OBAYoDcV8wFi5iAIAk02SJJGpdBA1aLz7aOyfAQAqbajjgqNhTANQHtV2wTIAAACoJoqgAQAKKAoFAJg4CgmAauciCgAAAAAAlJMLlgEAAMDQFEEDAMAEMoscAAAAAJTXeC+2FOGCSwBMTWahBAAAAABqiUlYpgZF0AAATAq1clLGVJ5FrlbWEQCj4wIfAAAAADA5mIUSGIliJxePhpOLYWoab+6IkD8AAACmKkXQlFWaptHV1RW9vb2VDoVJpK6uLhobG51QD0AeJ2VUP+sIqAQH08tvKl/gAwAAAABgIrkoJQAAAAAw1SiCpiw6Ojpi06ZNsWXLlujp6al0OExC9fX1MWPGjJg1a1a0FswoCUBpmb23+llHAAAAAACDKRQDYLJxUUoAAAAAYKpRBE3JbdmyJdauXRuNjY2x2267xbRp06Kurs6BZEoiTdPo7e2Nbdu2xebNm2Pjxo2xxx57xIwZMyodGsCkZfbe6mcdAQAAAAAMplAMAAAAAAAAapsiaEqqo6Mj1q5dGzNnzoxFixYpfKZspk2bFvPmzYt169bF2rVrY6+99jIjNFPehuXLB7Vl0zQ6Ozry2jauWBGZIvl59rJlZYoMAAAAql+x7eoI29YAAAAAAAAAAACVogiaktq0aVM0NjYqgGZCJEkSixYtiu3bt8emTZsUQQNQdVycAAAYrTRNI5vN5rVlMhn7WYB+493OiLCtAcDU1BQRpxccS2qqwj4BAAAoHcddAAAAph7H8CYfRdCUTJqmsWXLlthtt93sIGLCJEkSM2fOjI0bN8ZznvMcnz0AAIBJYCrvhMxms9He3p7X1tbWFs3NzRWKCAAAJockSSJTA30CAABQOo67AAAATD2O4U0+iqApma6urujp6Ylp06ZVOhSmmNbW1nj66aejq6srmpqmymnxAABQnVxNfXIb7+yjI5151E5IAAAAAGAqK7YvNqI8+2MBAAAAAKqZImhKpre3NyIi6urqKhwJU019fX1EPPsZBEpnoopcAKAYv0O1ydXUAQAAAAAAgInm+DIAAABMToqgKTmzezHRfOYAAAAAKJemiDi9tXVQGwAA1cNsmQAAAFB6aZpGNpvNa8tkMs7bBWAQvxkAlJMiaAAAAAAmDSe+A6WWJElkKh0EADBluAALAAAAUC2y2Wy0t7fntbW1tUVzc3OFIgKYmmqhwNhvBgDlpAgaAAAmkJMYAQBgaquFA9QAQOW4AAsAAEDpOEcDAJgMFBhTCs5VAGqZImgA2IViM8mNZha5CDPJAc9yEuPUY8cRMNk5eQRgdBygBgAAAMbK/liA0XGOBgAA9HGuAlDLFEEDAACUkR1HwGTn5BEAAAAAgIlhfywAAAAAMNUoggYAAAZxFXkAAAAAoNbZzwkATHUbli8f1/NnL1tWkjgAAAAAYKwUQVNR493JWosmasfwrbfeGi960YvG3c+DDz4Ye++9d+y9997x8MMP7/LxjY2NMX369Fi8eHEceeSRccEFF8Rf//VfD/n4b3zjG/GGN7whIiIuu+yy+PCHPzzumAGA8XMVeQAAAEohTdPIZrN5bZlMJpIkqVBEAEwl9nPC5DLUOSbZNI3Ojo68to0rVkSmyJhTMR8AAAAAANQWRdBASXV1dcWGDRtiw4YNsXr16vjmN78ZF1xwQXz961+Purq6SofHFFDswPdoDnpHOPANADASTjgEAGAkstlstLe357W1tbVFc3NzhSJiIDOkAgAAAAARzr0EAACqlyJomKSOPvrouP3224e8/4gjjoiIiIULF8b1118/5OMWLVo0qG24frdv3x4PPfRQ/PjHP45///d/jzRN45vf/GY897nPjY9//OOjeAcAAAAAwEgoYgTGygypAAAAAAAAAEA1UwQNk9T06dNj6dKlu3xcU1PTiB430K4ef8IJJ8RrX/vaaGtri9e+9rWRpmlcccUV8e53vzvmzZs3qtcCAIByS9M0stlsXlsmk4lkiCsXA5SC2dSBUlLECAAAlIMLLgEAAAAAAJWmCBoom9e85jXxne98J37yk5/Ejh074pprrom3vvWtlQ4LAADyZLPZaG9vz2tra2uL5ubmCkUEAAAAAFB5LrgEAADAaBS7GPhoLgQe4WLgAONlYgZgMlIEDZTVaaedFj/5yU8iIuK+++6rcDQAAABANTKz1NRkvQMAAAAAAAAAADAcRdBAWfX09PT/P5vNVjASAAAAoFqZWWpqst4BAAAAAAAAAAAYjiJooKxuvfXW/v8fdNBBlQsEAGACbFi+fFBbNk2js6Mjr23jihWRSZKifcxetqwMkQFgxlkAKK9i20MRo9smsj0EAAAAAFA9HGMFmFi1crzNeZIATDRF0EDZ3HDDDXHddddFREQmk4lXvepVFY4IAGBycJCJaubzSbUy4yxQCQ7+AgAAAAAAtcoxVgAAoBooggZKpru7OzZt2hR/+tOf4tprr40vfvGL0dvbGxERH/vYx2LRokUVjhAAYHJwkGnsxluINNmKkNI0jWw2m9eWyWQiGaIIayR8PgEAAAAAyCnHfmgAAAAAAKYORdDAqI3mQFQmk4mPfexj8f73v7+MEQEAAGORzWajvb09r62trS2am5srFBEAAABENEXE6a2tg9oAgNpjPzQAAAAAAOOhCBoouZaWljj88MPj9NNPjze+8Y2x5557VjokAAAAAAAAakSSJJGpdBBMeRuWLx93H7OXLRt3HwAAAAAAMF4uQAvUMkXQwKjdfvvt/f9P0zS2bt0av/jFL+KKK66IjRs3xrRp0+LCCy+Mt7zlLRWMEgAAAAAAoLalaRrZbDavLZPJRJIkFYoIAAAAAACAWuMCtEAtUwQNjNrSpUsHtZ1yyinx2te+Nl70ohfFo48+Gm9961tj9erV8YUvfGHiA6RmFLuCfjZNo7OjI69t44oVkRnihC5X0AcAAACA0ihHsaUrisP4ZLPZaG9vz2tra2uL5ubmCkVELVJMDwAAAAATz345AIDSUAQNlMx+++0X1113XRx//PGxY8eO+OIXvxgLFy6MSy+9tNKhAQAAAACwC+UotnRFcZj8nMhX/RTTA0B5FbsA/Gi5ADwAAEw+9ssBAJSGImigpA4//PC48sor421ve1tERFx22WXxghe8IE4++eQKRwaUitl7gEqo5ZNH5M3qZx0B1UROAgCg1jiRD5jsXOwBAAAAAMqrls8RLQf7JAHyKYIGSu6tb31r/PCHP4ybbropenp64sILL4zVq1dHS0tLpUMDSsDsPQCjI29WP+sIqCZyElAJxQ4oZ9M0Ojs68to2rlgRmSEOqk6mA8oAADCQiz3AyI13+3Iiti2dVA0AAABUO/skAfIpggbK4qtf/Wo8//nPj23btsUDDzwQl112WXzqU5+qdFgA42JWPgAAAAAAAAAAAAAGctFhAIDyUQQNlMVee+0VH/vYx+I973lPRERceeWVcd5558WRRx5Z4cgAxs6sfJPbeK/6bgckAAAAAAAAAAAAAKVUC5M41UKMANQuRdBA2bzrXe+Kq6++OlauXBk9PT3x5je/OW677bZoaJB6AACqTZqmkc1m89oymUwkQ1x5lNoy1IUeRnPFWRd7AIDScPCXamB8CAAAAAAAALWhFiZxqoUYAahdKhGBsqmvr4+vfOUrceyxx0ZPT0/cfvvtceWVV8YHPvCBSocGAECBbDYb7e3teW1tbW3R3NxcoYgAACYnB38BKKZWLk5QLM7RxBjhIgoAAAAAwNTg4sgwNZiABqD8FEFTUU5ymPyOPPLIePe73x1XXnllRER8+MMfjrPPPjv222+/CkcGlTXUCW2jIYcCAAAAAAAAUM2c9A8AAExVLo4MU8N4J6AZ7wVo1RQAU4EiaJii0jQd1eMfeuihMb/WFVdcEVdccUXR+17/+tfH61//+jH3DQAAAAAAAFCrzBICTHZO+gcAAAAAYDwUQQMAAAAAAAAAVMB4ZwkBAAAotWKzEY6WGQkBAAAoFUXQAAAAAAAANaYcs0Y2RcTpra2D2gAApopixR7ZNI3Ojo68to0rVkSmyLhLoQcAABNNwTIAAACTnSJoAAAAAACAGlOOWSOTJInMeAMDAAAAAAAAAIASUQQNAAAAAAAAUIVqYYb2WogRAAAAAACgVjj2ApBPETQAAABMUXaWAgAAVLdamKG9FmIEAAAAqCZpmkY2m81ry2QykSRJhSICAKqJYy8A+RRBAwAAwBRlZykAQPXbsHx50fZsmkZnR0de28YVKyJT5CS52cuWlSEyAKpRsd8NvxkAAABQXbLZbLS3t+e1tbW1RXNzc4UiAgAAqF6KoAEAAKgZZi4GAAAAAAAAAAAAAJgaFEEDAABQM8xcDAAAAAAAAAAAAAAwNSiCBgAAAAAAqDFNEXF6a+ugNgAAAAAAAAAAmCwUQQMAAAAAANSYJEkiU+kgAIBR2bB8+aC2bJpGZ0dHXtvGFSsikyRF+5i9bFkZImM4Lj4DAAAAAABQOYqgKbk0TSsdAlOMzxwAAAAAAFSHNE0jm83mtWUymUiGKOYDgGrn4jMAAMB4uCAWAADA+CiCpmTq6uoiIqK3t7fCkTDV9PT0RMSzn0HgWa5MDwAAAABMpGw2G+3t7XltbW1t0dzcXKGIAAAAAAAAAIBapQiakmlsbIz6+vrYtm1bTJs2rdLhMIV0dHREfX19NDY2VjoUqDquTA9AMa4yDAAAQzOLLQAAAAAAAAAAVAdF0JRMkiQxY8aM2Lx5c8ybN88JYUyINE1j8+bNMWPGDJ85AAAAAGDczGILAAC1pSkiTm9tHdQGAABA5dlmo5q5OPLUY50D1CZF0JTUrFmzYuPGjbFu3bpYtGiRgQBllaZprFu3Lrq6umLWrFmVDgcAAAAAAJjCnDgDAJWRJElkKh0EAACMgqJQphLbbFQzF0eeeqxzgNqkCLrKrVmzJr75zW/Gr3/967jvvvtiw4YNUV9fHwsWLIhDDz00zjjjjPhf/+t/VU0BaGtra+yxxx6xdu3a2L59e8ycOTNaW1ujvr7eCR6URJqm0dPTEx0dHbF58+bo6uqKPfbYI1oLdgYBAIyVE5YBgFrnxBkAqAwnzgAAAAAwEopCAQAARk4RdJV6/PHH4x3veEdcc801Re9/6KGH4qGHHorrrrsu/v7v/z4+9KEPxXve856oq6ub4EgHmzFjRuy1116xadOm2LhxYzz99NOVDolJqL6+PmbMmBGzZs1SAA0AlJQTlgGAWufEGQAAAAAAAAAAACYDRdBV6M4774y/+Zu/iccff3xEj9+yZUu8//3vj5///OdxzTXXREtLS5kj3LXW1tZobW2N5zznOdHV1RW9vb2VDolJpK6uLhobG83GCAAAAAAAAAAAAAAAAACTlCLoKvPAAw/Ei170onjmmWcG3XfIIYfEnnvuGZs2bYq77rorNm7cmHf/9ddfH+eee2785Cc/qZri0CRJoqmpqdJhAAAAAAAAAAAAAAAAAABQQxRBV5Hu7u549atfPagA+pWvfGV8+tOfjv3337+/bceOHXH11VfHe9/73ti0aVN/+09/+tP47Gc/G8uWLZuosAEAAAAAoCZtWL58UFs2TaOzoyOvbeOKFZEpcvHR2fbFAwDj1BQRp7e2DmoDAACgOqRpGtlsNq8tk8lUzYRVAMDEcXwZoDIUQVeRFStWxO23357Xdskll8SVV1456LHNzc3xpje9KV74whfGKaecEuvXr++/72Mf+1i84Q1viFmzZpU9ZgAAAAAAAJhKip3gEuEkF6qXItvqliRJZCodBAAAAEPKZrPR3t6e19bW1hbNzc0ViggAAGBqqat0APTJZrPxsY99LK/t1FNPjSuuuGLY5+23337x05/+NBobG/vbnnnmmV0+DwAAAAAAAIDJL0mSyBT8ma0KAAAAAAAAqAVmgq4S1157bTz55JN5bZ/85CdHdPD5yCOPjLe85S3x+c9/vr/ty1/+cnz4wx+Oujp17gBmOAAAAAAAAAAAAAAAmHo2LF9etD2bptHZ0ZHXtnHFisgUqeOZvWxZGSIDAEZChWyV+N73vpd3+5BDDokTTjhhxM9/29velnf7iSeeiF/+8pcliQ2g1pnhAAAAAAAAAAAAAAAAAKC2KIKuAl1dXfHzn/88r+1lL3vZqPp43vOeF/vvv39e27XXXjvu2AAAAAAAAAAAAAAAAAAAYKI1VDoAIlatWhVbt27Nazv55JNH3c+JJ54Y999/f//tW2+9dbyhAQAAAADAlNIUEae3tg5qA9gV+QMAAAAAAAAASksRdBW46667BrUdfvjho+7n0EMPzbt99913x/bt26OlpWXMsQEAwGS1Yfnyou3ZNI3Ojo68to0rVkQmSQY9dvayZWWIDAAAqKQkSSJT6SCAmiR/AAAAAAAAAEBpKYKuAmvWrMm73draGosXLx51P/vvv3/e7d7e3njwwQfj4IMPHld8AADA5Ge2KgAABjI+BAAAAABgqil2Qf3RXEw/wgX1AQAASi1J0zStdBBT3fnnnx/f/va3+28fcMABce+99466n//5n/+J448/Pq/t+uuvjzPOOGOXz02G2BCPiGhqcmobUCY9PUWbewtu1w3XR339iPoclRH2WStxjrm/cvRZje97ovosh1p571Olz4n4DpWjz2pcllXQ54hz/CR872Pusxym6neoHGrlc6TP6urTb5s+y6VW3nstfN7L1WepVeP60Wf5+6wVvkP61OfY+xtGb2/+lnVd3bB7T2tPNa4ffVZ/n7U6PqzGZalPfZaqT9/L8vZZDrXy3qdKn75D+tRn6fssB99Lfepz7P3VSp/VuCwnqs9ymCrnCk5Un+UwVb9D5VAr712fpeuvVvp0rqA+y9znmNf5BPc5YpNs/ehTn6Pqr5b6pF9nZ+eQ9w1V6mwm6Crwl7/8Je/2ggULxtTPvHnzBrU99dRTY+proOE+WAAVV4qBlT7L058+S99nOdTKe6+FPmshRn3qs9r7LLVaed+1sCwjaue967N6+9Pn1O2zHGrhvddCjOXqsxxq5b3rc+qplfddK+tcn9XdZ6183mtFLaxzfVZ3f/rUpz6rrz99lr7PcqiV914LfdZCjPrU51Tss9Rq5X3rU5/V2J8+a6PPcqiV914rfZZarbzvWliWEbXz3qdqn7UQoz71Wc191kKM+tTnVOuzFmIsV59TnCLoKvDMM8/k3Z45c+aY+pkxY8agtg0bNgz7nGw2G9lsdkyvBwAAAAAAAAAAAAAAAAAA5VBX6QCIQUXIra2tY+qn2PN27Ngx7HMuv/zymDVr1pheDwAAAAAAAAAAAAAAAAAAykERdBUoLIJuaBjbBN319fWD2rq6uoZ9zj/+4z/Gpk2bxvR6AAAAAAAAAAAAAAAAAABQDmOrtqWkenp68m4XK2YeiWLP6+3tHfY5mUwmMpnMmF4PAAAAAAAAAAAAAAAAAADKQRF0FWhsbMy73d3dPaZ+is36XIoC56ampnH3UQs6Oztr4r2Ks7TEWVq1EGctxBghzlITZ+nUQowR4iw1cZZOLcQYIc5SE2fp1EKMEeIsNXGWTi3EGCHOUhNnadVCnLUQY4Q4S02cpVMLMUaIs9TEWTq1EGOEOEtNnKVTCzFGiLPUxFlatRBnLcQYIc5SE2fp1EKMEeIsNXGWTi3EGCHOUhNn6dRCjBHiLDVxlk4txBghzlITZ2nVQpy1EGOEOEtNnKVTCzFGiJOx6+zsHPVzkjRN0zLEwigcdthh8cc//rH/dltbW/zwhz8cdT+bNm2K3XbbLa9t+fLl8e53v3u8IU56mzdvjlmzZsWmTZti5syZlQ5nSOIsLXGWVi3EWQsxRoiz1MRZOrUQY4Q4S02cpVMLMUaIs9TEWTq1EGOEOEtNnKVTCzFGiLPUxFlatRBnLcQYIc5SE2fp1EKMEeIsNXGWTi3EGCHOUhNn6dRCjBHiLDVxllYtxFkLMUaIs9TEWTq1EGOEOEtNnKVTCzFGiLPUxFk6tRBjhDhLTZylUwsxRoiz1MRZWrUQZy3EGCHOUhNn6dRCjBHiZOLVVToAImbNmpV3e+vWrWPqZ8uWLYPapk2bNqa+pppMJhOXXXZZSWbOLidxlpY4S6sW4qyFGCPEWWriLJ1aiDFCnKUmztKphRgjxFlq4iydWogxQpylJs7SqYUYI8RZauIsrVqIsxZijBBnqYmzdGohxghxlpo4S6cWYowQZ6mJs3RqIcYIcZaaOEurFuKshRgjxFlq4iydWogxQpylJs7SqYUYI8RZauIsnVqIMUKcpSbO0qmFGCPEWWriLK1aiLMWYowQZ6mJs3RqIcYIcTLxzARdBV75ylfGj3/84/7bxxxzTNx2222j7mf16tVx6KGH5rX95Cc/iZe97GXjjhEAAAAAAAAAAAAAAAAAACaKmaCrwKJFi/JuP/7442Pqp9jzFixYMKa+AAAAAAAAAAAAAAAAAACgUhRBV4H99tsv7/a6deuiu7t71P08/PDDg9r23XffMccFAAAAAAAAAAAAAAAAAACVoAi6Cjz/+c/Pu93d3R0PPPDAqPu555578m7Pnz8/5s6dO67YAAAAAAAAAAAAAAAAAABgoimCrgJHH330oLbf//73o+6n8DlHHnnkmGMCAAAAAAAAAAAAAAAAAIBKUQRdBebOnRuHHHJIXtvNN988qj46Ojrit7/9bV7baaedNu7YAAAAAAAAAAAAAAAAAABgoimCrhJnnnlm3u0f/ehHsWPHjhE/v729fdDjX/rSl5YkNgAAAAAAAAAAAAAAAAAAmEiKoKvEBRdckHf7mWeeiRUrVozoud3d3XH55ZfntZ100klx0EEHlSw+AAAAAAAAAAAAAAAAAACYKEmapmmlg6DPi1/84rjpppv6bzc3N8ctt9wSJ5xwwrDPe+tb3xpf+tKX8tquvfbaeNWrXlWWOAGglvzyl7+Mhx56qP924YVHAAAAAAAAAAAAAAAAgOqjCLqK/P73v4/jjjsuent7+9vmzJkTV199dbzkJS8Z9PjOzs5473vfG1/4whfy2k888cT4zW9+U/Z4AZg8NmzYEBERs2fPLnnfjzzySN7tPffcs+SvMZxzzjknfvjDH/bf7unpmdDXH4mOjo747W9/G48++mg89dRTkc1mY9asWbHffvvF0qVLY9Gi/8/eeYdHUX1/+OymJ5AACYRu6EgPXbpKJ/QiiCCCfikiiIqISFERRJoIgihNQEEEBCIggqFXAelVSmgBQg+E9PP7g9+OOzuzu7O7k2Rv9vM+zz5JNnfufaecOXNn7swUzm5FAAAAAAAAXCYpKYnu3r1L9+/fp6SkJEpNTaWMjAzy8/MjPz8/CgoKovDwcAoKCspu1RzF3bt36cmTJ9LfWd0ns0dSUhLFxcXJ+kIlS5Z0y+0gPT2djh8/TlevXqUnT55QWFgYFSpUiCpWrJjdagAAAAAAAAAAAAAAAAAAAAAAAAAAAACQI8FN0G7GyJEj6csvv5R9ZzAYKCoqinr06EGlSpWiJ0+e0KFDh2ju3Ln077//ysoGBwfToUOHqHTp0lmpnWN4++23aePGjUT0bLlfuHBB9zZSUlIoJiaG/vnnH7p58yYRERUuXJgqVapETZs2JT8/P13a6du3r/S7wWCg+fPnO13XnTt3aOfOnXTo0CH6999/KTY2lu7cuWN30HJ4eDiVLFmSKlasSNWrV6eaNWuSwWDQY/Z0Q4TBqyINBnb3gdXuQHJyMl26dMnhOMqXL5+uHnfu3KG5c+dSdHQ0HTlyhFJTU4mIyM/PjypWrEjt2rWjHj166JJPjEajFPsGg4HS0tJcrtMRunbtSqtWrZLaz6yboFNTU2nNmjW0ZcsW8vPzo2+++cbuNGvXrqXp06fT3r17bS6XypUrU+/evalv376UJ08eHa2dY+/evbR//37FvrNJkyZutf8EAKiDG9CyHhGOkUQ55hTh+B0A8IykpCTauHEjbdu2TTqfEB8fr2laf39/KlWqlHQ+oWnTphQZGamr3+7duyk6Olr1/Ey7du2oQYMGupzDKFmypPR7Zp1rsof5g6Eyq0928+ZN2rp1KyUlJdEbb7xht/ytW7dozpw59Oeff9LBgwdV+2mlS5emVq1aUa9evahGjRq6OzvC8ePHafLkybR69Wp6+vSp4v/58+enqKgoGj58OJUrVy4bDAEAjoA+Udbj7n0iUfpDROgTAZATQB7KHtw5FyEPAQAAAAAAAAAAAAAAAAAA2AY3QbsZGRkZ1K9fP1q0aJHD0/r7+9OaNWuoRYsW+ot5CJl5o1xCQgJNnDiRZs2aJbvAak5gYCB16tSJPv74Y5cHTJpuOmRmp+blwYMH9PPPP9PKlStp586dsjeUExFp2XVYDhYOCQmhli1b0ptvvkkvvfSSQz56k9WDV3P6YGATWTGwWsSB6jt27KBVq1bRtm3b6NSpU4p40kKBAgWkwf+tW7d2abucNm0affbZZ5SQkEBE6vFsMBjIaDRSz549adKkSRQeHu50e67uj1wlK26Cnj17No0bN47u3r1LRESRkZF08OBBq+XPnz9P3bt3pyNHjhCR9n1qSEgIjR07loYOHaqL98OHDyk5OZnCwsLIaDTaLMvMNGfOHJo8ebLi7d7mRERE0Mcff0xvvPGG3ToBAJkPbkB7RnbfgJYVx0hEOfuY091uPsOA5azHnQcrE2HAsjnbtm2j2bNn08aNGykxMVH63plTkOY5oFChQtSvXz/q378/FS5c2Gm/AwcO0LBhw2jfvn0KN/P2ihcvTmPHjqU+ffo43RZR9veHiDK3T3Ts2DH65JNP6I8//qD09HSqXbs27d2712r55ORkGjlyJH333XeUnJxMRLa3DdM6adSoEU2bNs2lY5Hr16/TihUrKCYmhq5du0bJyclUrFgxevnll+mNN96g/Pnzq043cuRImjp1KqWnp9t19fLyov79+9O0adPIx8fHaVd7IA9lD+6ci5CHrIM+0TM8oU+Uk/tDRO7VJ0IeynrcOQeZQC5SB3noGdmdh4gyPxchDyEP5XTcPReJkofwIAEAAAAAAAAAAAAAAABwEgZuR3p6Oo8YMYK9vb2ZiDR9ihYtytu3b89udeHp0qULGwwGNhgMbDQadav3yJEjXLRoUTYajVL91j5Go5H9/Pz4k08+4bS0NKfbNNXl6Lw8efKEx48fz3nz5mWj0ajqbPpey8fatJGRkbxlyxan54+Z+dq1azxt2jSOioriatWq8fPPP8/NmzfnSZMm8e3bt61O99FHH7GPj4/d9WE0GtnHx4cHDx7MKSkpTjkePXqU27ZtK7VXt25dm+WTkpJ42LBhHBAQYHUZqi3PJk2a8OHDh51y1JPMiiFm5v3793O9evVUty/z7yIiInjhwoUut+dsDJl49OgRjx07lgsWLKhpXWr5mM9no0aNeM2aNQ45paSkcK9evawuO2vLNiwsjKOjox1eBiZcXZaukpnb5dOnT7lly5aK9RsREWF1mt9//51DQkI0rQdr66RFixb88OFDp5xXrlzJ7dq141y5ckl1BwUFcevWrXnTpk2q08THx3P9+vU1b8dGo5GrVq3Kly9fdsoRAOA6W7du5a5du8pi3dlcZD59kSJFeMyYMXz9+nWX/ETL666SmbmIWZxjThGO39V4+vQpr169mocMGcL169fn8PBwzf2hwMBArly5Mnfv3p2/+uqrTDlm37VrF48YMYKbN2/OVapU4SpVqnDLli35gw8+4B07dnBGRoYu7ZQoUUL6lCxZUpc6HaFLly7ScvXy8sqUNuLi4vjnn3/mBQsWaCp/8+ZNHjt2LL/wwgvSNmr5KVu2LA8dOpQPHjyYKc6OcOzYMe7VqxcHBQWpuoaHh3O/fv34zJkzTtV/6NAhbtq0qep+xZHzCPbOKQQFBfHo0aOdivN58+axr6+v1byj1l6jRo34ypUrTi0T5uzPQcyZl4cmTJigWJ6lS5e2Wv7ixYscGRnpUF/IfH14e3vz+PHjHfZMTU3lTz75RDXvmf4OCQnhJUuWKKZ95ZVXNPual2nQoAHHx8c77KoG8tAzsjsPMWd+LkIeci0PWYI+kZzszkeZ2ScSpT/ELGafCHnoGdmdh7KiP8SMXKRnLkIekpPdeYg583IR8hDykCfkIWacm3OVrO4PAQAAAAAAAAAAAAAAQE4DN0G7MceOHeMuXbpwYGCg1Zufw8PDefTo0fzgwYPs1s0RZMbFz71793Lu3LkdHtxpNBq5Xr16fPPmTafadeZi8u7du7lYsWJWL3Q7c4He1rRGo9Gpi6CiDF4VZTCwnmTWAALRBqrPmDGDw8LCVLd5Vz+W9TVs2JAvXryoyWvgwIGal5/l/7y8vPiLL75wZlFqWpaffvpppn0qVKggmzct02ghIyODX375ZcVyMxgMnCtXLtVpdu3axQEBAarTaN2fmn5/4YUX+MmTJ5rXw9WrV7lhw4Z213u/fv1kD+F4+PAhV6hQQda21u00f/782T6oAABPAzegqZPdAy0zc8C/CMecohy/W4IBy3JychxhwLLrA5anTp3q0L7d2fgx/65mzZoO5YYffvhB1c9WrjR9HxYWxtu2bdPcljnZHTvMmRM/I0eOVCxPg8HAefPmVS0fFxfHzz33nGq/Qms/yPT3oEGDNHsmJCRws2bNrK5ry+/mzZsnTfvZZ5857Wo0Pjuvl5qa6vQyRh6Sk1NjiRl5SI88ZA76ROpkdwzhgRzi9YmQh+Tk1BgygVykXy5CHlInu2OIOXPiCHkIechT8hAzzs0xu38OAsCTefToEcfFxSF2AAAAZAvIQwC4BmIIANdADAHgGoghsTAwM2f9+6eBIzx9+pR27dpF165do1u3bpG3tzeFhYVRZGQkVa5cmYxGY3Yr5hi6du1Kq1atIiIig8FA6enpLtV3584dioyMpOvXr5PBYJC+Z2YyGAyUN29eSk5OpidPnkhtmpchIipevDj9+eefVLZsWYfaNhqNZDAYpLbszcvGjRupc+fOlJSUJHMx30XkypWLSpUqRYUKFaL8+fNT7ty5KTAwkLy8vMjLy4tSU1MpNTWVEhIS6MGDB3Tr1i2KjY2la9euSfWoLYdWrVrRmjVryNvb2+58PX78mDp16kR//fWXzE3N12Aw0Pfff0/9+vUjIqLPP/+cxo4dq7qc1TCv02AwUN26dWn79u2aPD/++GOaNGmSbL6ZmfLkyUP37t1TlL958ybVrVuXrl69KrXnqKPp7wEDBtC3335r1zEz0DuGiIjmzZtH/fv3V2xDauvfhOl/oaGhtHLlSmrcuLHD7ToaQ0RESUlJ9Morr9Dvv/9udZt3FbX6QkJC6Ndff6WmTZtanW716tXUpUsXxfQlS5akdu3aUcmSJSkpKYlOnjxJ69evpzt37qjG6+DBg2nGjBkOOWtZlqYymYWt7UUNLev7q6++oo8++kixnIKDg6lFixb0yy+/yMo/ePCAypYtK1u2zEy+vr70yiuvUFRUFNWsWZPy589P/v7+dP/+fbp06RLt2bOHli5dSocPH1bsl9544w2aN2+eXdczZ85Q8+bN6fr166rbpqlO0/dvvfUWfffdd0RE9Morr9Cvv/6quu35+vpSnjx56MGDB5SSkqKol5mpcOHCdPDgQSpYsKBdT2dJSkqiu3fv0v379ykpKYlSU1MpIyOD/Pz8yM/Pj4KCgig8PJyCgoIyzcHTuHv3rnT8QvTseMXdSEpKori4OLpz5w4lJydTSEgIlSxZ0u22g/T0dDp+/DhdvXqVnjx5QmFhYVSoUCGqWLGiw3VNmzaNRo4cSWlpabrnIbV6DAYDVa9enVavXk3FihXTVI9IeV1PMuMYiUiMY05Rjt/NOXz4MI0YMYJiYmJUHZ3B0ttgMFBAQAC99957NHr0aPLx8XGovvnz59OgQYM0x7vBYKAGDRrQ0qVLNcerJTk1jiZOnEjjxo2TLctSpUrR+fPnVctfunSJOnfuTEePHrV6XGWJ+frw8vKicePG0ahRoxzyTEtLo08//ZSmTp1KycnJsnpN7efOnZtmzZpFr732mmza7t2706+//qrJ17xMvXr16LfffqOwsDCbbp999hl9+umnVvftxYsXp8qVK1Pp0qUdPp9w9uxZOnr0qDTPlnWXLFmSduzYQYULF7bpePToUapbty4lJycr9hVVq1aV9YdiY2MVy8l03L506VLq0qWLzbYs0Ro7O3bscKheRxgzZoxUv8FgoG3bttk9LmjUqJHV/61fv57atm2rut8pVKgQXb9+XVY+PT2d6tSpI+vTmKaJiIigVq1aWe0Lbdq0SXW9TZ8+nYYMGWJ33qOiomjDhg3SvFv6Wn7n5+dHJ06cIIPBQBUrVpT6OabyLVu2pI4dO1KlSpUob968dP/+fTp+/DitXr2a/vzzT4Xn22+/Td98841dT3OQh9TJ7jxElDm5CHlI3dWRPGQO+kTWye4Yyoz4EaE/RCRenwh5SJ2cGEMmkIvUXZ3JRchD1snuGCLSP46Qh2y7Ig/J2xM9DxF59rk5EXKQVu7cuUM7d+6kQ4cO0b///kuxsbF0584du9dYw8PDqWTJklSxYkWqXr061axZU/dr+ykpKRQTE0P//PMP3bx5k4iIChcuTJUqVaKmTZuSn5+fLu307dtX+t1gMND8+fN1qdcR3n77bdq4caPkcOHChUxpJy4ujuLi4qh69eqaym/bto3+/PNP2rFjB129epXu3LlDKSkpFBwcTKVKlaLIyEhq1aoVtW7dmnx9fTPFWStJSUn0888/0y+//EIHDhygR48eSf/Lly8fNWnShNq1a0c9evRw+BqRMy4Yq5C1uPtYBVHGKRDpO1ZBK+6ai5CH9Ad5KHPyEGIIMWQNxJA2EEOIIWsghrSBGEIMWQMxBLIK3AQNhMPLyytT63fkQprBYKC0tDSr/+/fvz/98MMPsgt+ERERNHbsWOrQoQOFhIQQEVFsbCytWrWKZsyYQVevXlVcdMyfPz/FxMQ4dILJkQthZ8+epVq1atHjx49lbfv5+VGHDh2obdu2VK9ePYqIiNDcvjmJiYl0+PBh2rx5My1fvpzOnz+vuAhqfsOdLUQYvOrug4FFGlgtwkB187batm2r2D5N81+6dGmqV6+eS4P/Dx48SHv27KGkpCTFfAYEBNCff/5J9evXV/WrVKkSnTp1SponHx8fmjp1Kg0aNEjxMI2UlBRasGABjRkzRnHDrsFgoEGDBtHMmTN1XZbmZbIbLev78ePHVLRoUUpISCCiZ8smMDCQPv/8cxowYAAFBAQopnn33Xfpm2++kc1nw4YNacmSJZouykRHR9P//vc/un37ttSmwWCg3bt3U926dW261qxZk86dO2d3EIZ5vZs3byZvb29q0qSJ7H8FChSg9957jzp27EhlypSRpj937hytWrWKpk+fLm03pjZefvll2rx5s9151EJSUhJt3LiRtm3bJnWk4+PjNU3r7+9PpUqVkjrSTZs2pcjISF28iIh2795N0dHRqh3pdu3aUYMGDXTpuJcsWVL6PTM7sbbo2rUrrV69WnKwdTzkCjdv3qStW7dSUlISvfHGG3bL37p1i+bMmUN//vknHTx4UDWWS5cuTa1ataJevXpRjRo1MkNbE8ePH6fJkyfT6tWr6enTp4r/58+fn6Kiomj48OFUrlw5u/XhBjTbaMlFIh0jEbn/MacJEY7fzcGAZetk92BL3DjjngOWN27cSG3atFHUX7VqVRowYAC1bdvWbn6wR1paGu3cuZN+/vln+umnnxSDTRs0aGB3H96yZUtpH2GarnPnzjR58mTFuY5//vmHJk2aRCtWrFDMl5eXFy1ZsoS6d++u2V9r7LjTg6FsHd9lZGRQ6dKl6fLly7LtpW3btvThhx+q9km//fZbeuedd2Tlw8LC6JtvvqFu3brZfMDjnTt3aOLEiTRjxgxpHpiZ/P396cyZMzb7UjNmzKBhw4Yp1mPhwoWpevXq5OPjQydOnJDOU5nW0SuvvEKhoaH07bffSt8/99xztHz5cqpTp47V9nbt2kU9evSgGzduSG15e3vTqVOnqHTp0lanMwd5yDrZnYeIcOOMO+Yhc9Ansk1O6xOJ0h8iEqtPhDxknezOQ578cDUiMXIR8pBtctrDoZCHkIc8LQ8Ree65ORFykD0ePHhAP//8M61cuZJ27txJGRkZsv9riS3L7TokJIRatmxJb775Jr300ksu+SUkJNDEiRNp1qxZspsazQkMDKROnTrRxx9/rOmamS1yajyZePr0Kc2ZM4fmz59PZ86cofr169vNr+vWraNx48bR0aNHpe/UtgvTdhAaGkpvv/02DR8+nAIDA13y/eeffygmJoauXbtGycnJVKxYMXr55Zepdu3aVqfZuHEjDRw4kK5evWrXNSIigiZNmuTwsYs1MFbBc8Yq5ORxCkT6j1WwhzvnIuQh5CER8hBi6D8QQ0oQQ/ZBDP0HYkgJYsg+iKH/QAwpQQyBLIcBEAyDweA2H6PRaNXzxo0b7Ofnx0ajUSrbvHlzfvTokdVpUlJSeMyYMezr68tGo1H6GAwGDg8P57Nnzzq0nMzbtkWTJk2kcqZpunbtynFxcZrbc4Rly5Zxvnz5ZO0ZjUbeunWrzem+/vprmadp2iJFinDbtm25U6dOXLZsWcW89+jRgwcPHiz7PiIigvft22ezvZ07d3LRokVlbfn4+PD58+etTpOens4lSpRQLM927drxrl27VKeZNWuWonz+/Pl52bJlnJ6ebtMxPj6e33vvPfby8pJNHxAQwLGxsarTWC5DvT+WMWLr4+XlZXP+WrRoIVtvBoOBu3TpwpcuXVKUPXz4ML/yyiuq24i3tzcvW7bMZlvWlpOWGGJmnjJlimI9+vr68pAhQ/jMmTMOtW2LxMREXrp0KVeqVEnR3nPPPae6j9m0aZNsfry8vDg6OtpuW/Hx8RwVFaVox2g08ocffqjZWcuytLW96LHNat0uta7v7777TjZfAQEBvHv3bqvlnzx5wgEBAbI22rRpw6mpqZqXIzNzbGwsP/fcc7J62rVrZ3Oat99+W7EOAwICuEePHjx16lT+5ptv+K233uI8efLIyjVs2JA7deokm8+2bdvazGPMzPfv3+fmzZsr1ru9fbw9tm7dyl27duVcuXJZXbeO5G/Tp0iRIjxmzBi+fv2602779+/nevXqqXqZfxcREcELFy50aTkwO75/ygy6dOmi6XjIWY4ePcpt27ZlHx8fNhqNXLduXZvlk5KSeNiwYVKc2ds2TGWaNGnChw8fdtrz2rVrPG3aNI6KiuJq1arx888/z82bN+dJkybx7du3rU730UcfSfNmz9PHx4cHDx7MKSkpVuvbsGGDav6rVq0af/fddy5t3yZSU1M5JiaG33zzTdXl3LBhQ7t1uHteF+kYSYRjTmYxjt/N+fTTT1X34aa/n3vuOY6KiuJ3332XJ02axAsWLOBff/2V169fz3/88Qdv3ryZN2zYwGvXruWlS5fyrFmzePTo0dy7d2+uU6cO+/v7W627VKlSmmL1yJEjUj2Wxy+RkZHcuXNnbtOmDUdERKhubwaDgf38/PjXX3/VtEzM0RJH27dvz7RP48aNZfO0Y8cOu9PY4vfff1ddPgaDgQsXLqwon5aWxjVq1FCdpkSJEjxo0CBesGABR0dH8+bNm3nFihU8adIkbt++vdV1NmPGDE3Lvk2bNlbXp9p3/v7+/O+///KFCxfY399fUb5Vq1b8/fff8549e/j06dO8Z88enjt3rmw/be75zjvvqHqlpaVxyZIlZduGj48Pz5w5U9N8OcPFixdl68H0c8GCBVanOXLkiKL8xx9/bLetmJgYKZYs9yurV6/W7Kz12M0yR2bnx5bnb7/9ppin6dOnWy2fnp7O4eHhsmVYunRph49PNmzYIG3PpnYHDBhgtfzTp08V7ebLl49/+eUXRdnNmzdzsWLFpLK+vr4cHBwstVOmTBmOj4/X5Hnt2jUpF5mmf/PNNzVNizxkG62xJEouQh5yPQ+Zgz6RfbTEkGVben8sc42tj60+kSj9IWax+kTIQ7bREkOi5CATyEX65SLkIftoPZYTIRchD1kHeQj9oZx4bs7dc5Atnjx5wuPHj+e8efOq7gcd3edamzYyMpK3bNnilOORI0dk51FsfYxGI/v5+fEnn3zCaWlpTi8XrfGUmWTWddZt27ZxiRIlZMvz+eeft1o+JSWF+/fvb3O7tpVHixUrpum4U40tW7Zw5cqVrbb1wgsv8KlTpxTTffPNN+zt7W13O7b8/wcffOCUpwmMVfiPnBxDzOKMU2B2n7EKtnD3XIQ8hDzk7nkIMaQEMfQfiCH7IIaUIIb+AzFkH8SQEsTQfyCGQHaBm6CBcDiaMB39aE3M9hLHt99+K0t05cuX58ePH2uax507d3KBAgUU7RUvXpyvXbvm0HKy57lnzx5F2REjRmhqwxVOnz7NxYsXl7XbqlUrq+VFGbwqwmBgc7/s/tjaNkUZqM7M/PDhQw4ODpa1V7hwYZdPWNsiLS2NBwwYoPAcN26couzw4cNly2Pw4MGa28nIyOAPPvhAsTyNRiNPnjxZUx1aluWMGTM4MDBQdT9bpEgRjoiIcPoTFBQk2+a0TGOPbt26yeqcMGGCzfKrVq2SLYeCBQvavZnYGgcPHmRvb2+pLl9fX37w4IFq2Zs3byr2DbVq1VIdGBMfH8/NmjWTrWvTwb7R+Oymba2kpqZyw4YNZXU5Mr05hw4d4qZNmzqcp7XmelM9QUFBPHr0aIcv3sybN096eImal1pbjRo14itXrji1PJhzdkeamXnChAmKZVq6dGmr5S9evMiRkZFW14G9bcDb25vHjx/vkGNqaip/8sknqhczTX+HhITwkiVLFNO+8sorml3NyzRo0ED1+AU3oGlDS9yIcozELMYxpyjH7+bzprYPx4Dl/3AkjjLr48hxAG6cyfwBy5bHuN7e3rxu3Tqb9etBYmIiN2rUSNZ2lSpVrJb/4osvZMuwRYsWmtuKj4/nBg0aKNa9v7+/5of8aD12c5f4sef51ltvyero06ePzfnfvn27bBn4+/s79JA/c5YsWSKrK0+ePFaP3xcvXiwrGxISwidOnLBad2xsrHQuzvK46uTJkw557tixQ1ZH/vz57U6DPGQf0WLJVi5CHrKOMzfOoE+kDUeO5bKzL2QeX9YQoT/ELFafCHnIPo7EkDvnIBPIRdZxNBchD2nD0WO57M5DtjyRh2yDPPQM9Idyxrk5d89Btti9e7cU17bWmaP7RVvbg6M3ye3du5dz586teZsyL1evXj2+efOmw8uFOedeZ/3tt98UecJgMHCBAgVUy6empnKzZs2sbiP2tgHTdz4+PvzTTz855Dp27FhN22BISAjv379fmm7NmjWy+XPE1Wg0cv/+/R1erhiroCSnxhCzGOMUmN1rrIIt3D0XIQ8hD7l7HkIMqYMYegZiyD6IIXUQQ89ADNkHMaQOYugZiCGQneAmaCAcahdas+tjK3F07dpVVs6RC8HMz06UmZ6mYT6vFStW5Hv37tmdXmuSHTp0qGx5tm/f3iFPV9i3b5/syYJeXl58//591bKiDF4VYTCwloM9Vz62DljVDgqsIcpAdWbmOXPmyMrnzZuXL168qNnXFSwvoBYqVEhR5oUXXpCtE2cuaHz++eeK5Wk0Gnnp0qV2p9W6LE+dOsXVq1dXbDvVqlXj48ePO+xsIjMO+EuVKiXbruw95OKTTz6ROXz11Vcutd+jRw9ZfZs2bVItZ35x3mAwcLly5TghIcFqvcnJybJ1YGojX758VvfP1rh8+TL7+flJ9QQGBjp80W7q1KkOXbRzNIerdXBr1qypOUZ++OEHVTdb+0HT92FhYbxt2zaHlocJR/ZPmUVmXVgcOXKkYpma9qtqxMXFKd6OrmX7UFv3gwYN0uSYkJCg6MDbWv/z5s2Tpv3ss8+c9jQan52AsXyDPG5A26qpDi1xI8oxErMYx5yiHL8zY8CyVhyJI1dytF4fW3GEAcu20TpguVevXrLlPXLkSO0Lw0Vu3LjB+fLlkzlevnxZtWzz5s1lngcOHHCoraSkJG7durUihkJCQvjo0aN2p9d67NapUyerxxTuFD+VKlWS/Ly8vOweO1v2Jd999127y8wWpuMPU5179uxRLdenTx9ZudmzZ9ute+nSpYr11bdvX6c8Lbe7I0eOWC2LPKQNrbEkQi5CHrKNozfOoE+0VVMdWmLIvH537hOJ0B9iFqdPhDykDUdiKLvzj70YYkYusocjuQh5aKumOhw9lnPnXIQ8ZB/kof9Af0gdEfKQCDnI1nwGBAQo9nfm6yd37txcrVo1btWqFffu3ZvffvttHj58OH/00Uc8atQo/vDDD3nYsGH85ptvcpcuXbhhw4aylxxY7kdNf7dp00ZxHUuN+Ph4Llq0qNV6QkNDOVeuXFbbMhievSHemf2p1njKTPS+znrmzBkODAxUXVY+Pj6q07z++uuq24jRaOQKFSpw7969+f333+dRo0bxoEGDuFWrVpwvXz7VaXx8fDgmJkaTq/m4CS35uGjRovzo0SN+9OgRFyxYUNF2aGgov/rqqzxhwgSeM2cOT5gwgXv06CG5Ws7bDz/8oHm5YqyCOjkxhpjFGKfA7H5jFazh7rkIeQh5yN3zEGLIOoihZyCGbIMYsg5i6BmIIdsghqyDGHoGYghkJ7gJGgjHo0ePpB2n5Y6ldevWvGjRIqc/tWrVku0UtUxjjfLly0tuwcHBdp8+q8aVK1e4dOnSivls1KiR3RvJtCbZWrVqycqdOXPGYU9XsLyRb/369arlRBm8KsJgYFEGVosyUJ2ZuV27djJXWxfJ9SYlJYXLlCkjcz127JisjHnHoXz58k63NWHCBMXy9PPz4+3bt9uczpFlmZqayiNHjpQ9idtoNLK/v7/mN09bkhkXQEJCQiS3evXq2S3fr18/mYOjA0Ys+fXXX2X1zZo1S7Vchw4dZOU2btxot+6dO3cq1tno0aOd8rTs6OzYsUPztJ9++qlqh9e8ExoVFcXvvvsuT5o0iRcsWMC//vorr1+/nv/44w/evHkzb9iwgdeuXctLly7lWbNm8ejRo7l3795cp04d9vf3t1p3qVKl7A6cOHLkiFSHZZ6OjIzkzp07c5s2baTBLWodRD8/P/71118dXq5aY2r79u2Z9mncuLFi3dqbxh6///671ZMOhQsXVpRPS0uTDVQyn6ZEiRI8aNAgXrBgAUdHR/PmzZt5xYoVPGnSJG7fvr3VdTdjxgy7nm3atLF5gsTyO39/f/7333/5woUL0uAa8/KtWrXi77//nvfs2cOnT5/mPXv28Ny5c2VvlTB3fOedd2Q+uAFNv7wuyjESsxjHnKIcvzNjwDJunMGAZTW0DFiuUKGCbJncuXPHoTZc5f3335dtDytWrFAtZ/4AoyJFijjVVkpKitTvM9/OihYtave4UeuxGzPzwoULZYNkTT9bt27Np06d4suXLzv1MeVQ83xt72ONsLAwTfssEwMHDrSbMxxh3rx5svq+//571XIVK1aUPHPlyqXpgUxpaWlSX89U/x9//OGUp+lhaaZ6li9fbrUs8tBWTXVojSURchHykH0cuXEGfSLP6xOJ0B9iFqdPhDy0VVMdOak/xIxcpAWtuQh5yPMeDoU8pA3kof9Af0iJCHlIhBykxpkzZ6Q3IVlub927d+effvpJ9e3lWnny5Anv3LmTx4wZI3sLtvl8a3kzzv/+9z/FtCVKlOBFixbxgwcPpHKXL1/mqVOncvHixVXzQ4ECBWyuFzW0xlNmxpIj8WQ02n6zOjNzw4YNFcuncOHCPH78eD516pSi/B9//KHabv/+/fnff/+12k5GRgavXbuW69Spo2ivaNGidh8cv2nTJqvLIXfu3IoB0aafI0aM4IkTJ8q+9/Pz4y+//JKfPn2q2lZiYiJ//vnn0os5zGPZfBuzBsYqWEdrDIk0VkGUcQrM7jdWQQ0RchHyEPKQO+chxJBtEEOIIcQQYsgSxJASxNAzEEOIoeyIIZD54CZoICwrV67ksLAwxY6qZ8+eTu9c9LxRLn/+/NJOr2HDhk7XExsbKz3p1Xw+e/ToYXM6rUnW/OJ4xYoVnfZ0FtOFTZOntQuwogxeFWUwsAgDq0UaqG56a7vB8OwJ0MnJyU75OsuUKVNky/3HH3+U/T8oKEia/5YtW7rUlulGA/PlmS9fPpsXmh1ZliZ27tzJJUqUUEzbqFEjhztQmXETtPmBbYcOHeyWf+2112QOiYmJLrV/8OBB2XqYMGGCajnTgzQMBgMXLFhQc/2WTxjfv3+/U54///yzbL6XLFmiaboNGzYoOkkGg4GrVavG3333ncNPdlcjNTWVY2Ji+M033+SAgABFp8he7ja/6GOapkuXLqrb5+HDh/mVV15RnSdvb29etmyZQ+5aY0pLB9ddOtLp6emymDfV365dO961a5fqNLNmzVKUz58/Py9btszuw2fi4+P5vffekz1wwWAwcEBAAMfGxlqdzvzt6ubTFSlShNu2bcudOnWSnZwxP24bPHiw7PuIiAjet2+fTc+dO3cqjgN9fHz4/PnzUhncgKZvXhfhGIlZjGNOUY7fmTFgGTfOYMCyNewNWM6dO7fUTu3atZ1qwxU2btwoWy/WBgnlyZNHKvPyyy873V5ycjI3adJEsY1XrVqVExISrE7naH/o0qVLisHRRqORy5Yta/fYwRp69onM+0Jt27a1W/7VV1+VtX3//n2X2t+zZ49s2Xz55Zeq5czPyzVq1Ehz/S+++KLM9/bt2055mg/QNhqtP7iKGXkIN84gD1lD640z6BN5Xp9IhP4Qszh9IuQhz+sPMSMXaUVLLkIe8ryHQyEPaQN5SA76Q3JEyEMi5CA11M5dde3alePi4pzysMeyZcukODKfb1s3+N+4cYP9/Pxk5Zs3b86PHj2yOk1KSgqPGTNGeiuveXvh4eEO3RSvNZ6yM34ciad9+/Yp5qlr16785MkTq9NUqVJFNk1QUJBD+/v09HT+6KOPFO1aG7NgonLlyoppBg4cKFt/169f51GjRsnWdb58+fi5556Tlkfu3LmtXj+2ZMuWLYo3wI8bN87mNBirYBtHYsi8Pb0/ljFi62NrrIIo4xSY3XOsghrunouQh5CH3D0PIYZsgxhCDCGGEEPmIIZsgxh6BmIIMZSVMQQyH9wEDYQmLi5OcWLPaDRysWLF+M8//3S4Pj0HhZrvPLXcIGeLkydPcmhoqCLBjxo1yuo0WpOs+eDVqKgolzydwfJGvokTJ6qWE2XwqiiDgZndf2C1SAPVAwMDpbpdeeiBs2zdulU2f1OnTpX93/yiSbt27Vxur3fv3orlWbp0aauDexxZluYkJCRIF5hN0xsMBg4ODuZ58+ZpriczboLOmzevNP8vvfSS3fLvvfeezMHWtqcFy1i3tk8y92zWrJnm+k251dV9k6XntGnT7E6TlpbGJUuWlK13Hx8fnjlzplMOWrh48aLsSb2mn9be6n7kyBFF2Y8//thuOzExMdLTls3jx8fHh1evXq3Z15GOtHnsuGtHmpn5t99+U8zX9OnTrZZPT0/n8PBwxX7I0YvOGzZsUHRSBwwYoFr26dOnijbz5cvHv/zyi6Ls5s2buVixYlJZX19f2cC9MmXKcHx8vCbHa9euKR5M8Oabb0r/xw1o+ud1dz9GYhbjmFOU43dmDFg2GHDjjD0wYPlZPZYDls33RXr0Mxzl0KFDms4n6Hl+5tGjRxwZGanYvlu1amV1cJMz/aGMjAyeMGGCzN103PjJJ59wamqqQ9565iHTsYdpvu0xaNAgWduuPjTM8jyStT6Gs+u9Q4cOMl9Hl7UJy+3T1gUb5CHcOGMP5CH1PGQCfSLP6xOJ0B9iFqdPhDzkef0hZuQirWjJRchD+uchZvfORchD2kAeUoL+0H+IkIdEyEGWmO8fTD9HjBjhVPuOcPr0aS5evLjiXJk1vv32W5ln+fLl7b7tx8TOnTulN26bx1Hx4sX52rVrmurQGk+WOUjvj2n92mvHnucHH3wgq6NevXo2z2edPHlSsQzWrVunadlZMmzYMFldERERVsuavynKYHj2AISlS5faLG/KuZa+q1atcshz7ty5sjpKly5ttSzGKtjH0Rgy39az62PLU4RxCszuO1bBEhFyEfIQ8pA75yHEkH0QQ4ghxBBiyBzEkH0QQ/+BGFKCGLKPIzEEsgbcBA1yBDNnzpTdhGja0QwePNiht23qORDH/KkkrlxMNrFr1y7p5Jf5PC5atEi1vNYka7oIYzQauXHjxi57OsrmzZtlydPaBVBRBq+KMhjYhDsPrBZpoLrpqUJGY/Y8TODAgQOy9T5p0iTZ/4sUKSL9T49BOKmpqdy4cWPZMjIYDFy/fn1OSkpSlHdkWaqxevVqzp8/v6Ketm3b8q1bt+xOnxk3QUdGRkouefPm5bS0NJvlf/zxR5mD1qd1W8P0ZFl7B+XmcdS+fXvN9ZsGYbi679y/f79s27T1YAYTq1atkq1rb29vpztJjpCYmCg9+d3UtrWBF1988YVsvlq0aKG5nfj4eMXgLYPh2eAeW09FNyendaSZmd966y1ZPX369LFZ3nwAlWn5OfJENnOWLFkiqytPnjyqg1kWL14sKxcSEsInTpywWm9sbKx00sR8Oh8fHz558qRDjjt27JDVkT9/ful/uAFN/7zO7N7HSMxiHHOKcvzOjAHLpnnHjTPWwYBl9f66acCq0WjkunXrOtWGK0RHR8vm09qNE+YXMRxZjta4ceOG4u0HRuOzJ4yq4Up/6PDhw1yhQgVFHdWrV3foeELP+ClXrpzkUrx4cbvlZ86cKWv7woULLrX/008/yeqz9qYS84cJOnK+y9TXNdWvdTCYJWvXrpXVY+uNUchDuHHGHshDts8bo0/keX0iEfpDzOL0iZCHPK8/xIxcpBUtuQh5KHPyELP75iLkIW0gD6mD/tAzRMhDIuQgS4YOHSqbxpFrw66yb98+2eBSLy8vq+upa9eusmXkyM2XzM9uGC1RooRs2zYYDFyxYkW+d++e3em1xpPazaLZ9bHlWbduXVk5ezE+bdo02Xx17NjR7jKzRnJyMpcpU0a2PI8fP65a9t1335V5anmj+7hx4xTrq2nTpg57ZmRkyN5AbzQarb5xF2MV7KM1hixzkN4fyxixVc6WpwjjFJjdd6yCJSLkIuQh5CF3zkOIIcQQYkgJYkgOYkgOYsg+iCE5iCE5iCH7OBJDIGswEgA5gMGDB9OhQ4coMjKSmJkMBgMxM82ePZsiIyPpwIEDWe6UL18+IiJiZjp//rzL9dWvX5/mz59PzExEJM3j//73P/rrr7+crjc8PFzyPHHiBKWlpbns6gh79uyR2iciKliwoGq53LlzS7/fv39fc/2WZR88eOCg4TOuXbtGRP955smTR7Vc4cKFpXInT560W+/zzz+v2o6znD17VmqfiKhQoUI2yxsMBho5ciTt27ePypcvL8VPWloaTZgwgerUqUOnTp1yyclZzJfxvXv3XKord+7ctH79eipSpAgR/Rc/mzZtosGDB7tUNxFR3rx5iejZcr9y5YrL9TnKhQsXpPaJ/otrE6a4YmY6evQoPX361KX2vL296bfffqPSpUsT0bPlSUS0d+9e6tmzp0t1q9GxY0c6fvw4tWzZUraPX79+PVWqVIlWr16te5v2qFmzprS8Hz58SCtWrLBZvkWLFuTl5SUtq+joaJfaX7x4sezvsmXLqpYz5SIiohs3bmiuPy4uTnIlIrp165aDhs+4fPkyEf23bYaGhtqdZs2aNdI0BoOBhg8fTm3btnWqfUcICAig5cuXS/FMRHTixAmKjY1VlN2+fbvkSET0+eefa24nLCyMtmzZQq1atZLl9OTkZOrQoQMdO3bMldmQ0bFjR6kNk6+eH3O0lrPG3r17pdg2GAz02Wef2Sy/Y8cO6XeDwUADBgywGgf2eO2116hhw4aS66NHj+jgwYOKcjExMUT037Y5ceJEqlixotV6ixcvTtOmTZPttwwGA/Xq1YsqVKjgkGPDhg2pWbNmkuPdu3fp6NGjREQUEhIilbt9+7ZD9eqBad9iL85FyuumOt31GIlIjGNOUY7fiYiSkpKI6Nl6t9YfyUwKFCgg+zsxMVG1nPn35svXUXx9fWndunVUrVo12X76+PHj1K1bN8rIyHC6bhMRERG0Y8cO+uKLL8jb21v6/vz589SwYUMaPXp0lvc9zfH395d+1+Jhuf0EBga61L6vr6/Nv008fPhQ+t38uM4e5rmBiGTHN46QK1cu2d+PHj2S/V20aFEiehZnR44ccTpenWX9+vWyv631f8PCwojomefx48c1H59Yo1ChQvT7779TUFAQEf2Xh+bOnUtfffWVS3VbEhkZSYcPH6Z33nlH1tY///xDNWvWpGnTpunanhaqVq0qLcNr167R3r17bZZv2rQpEf3Xb3TlHBYR0apVq2R/Fy9eXLWc+Xr/559/NMV6WloaHT58WNYXcvb43HI6k48ayEPP0DMPEbl3LkIe0oa9PKTWHvpEntEnEqE/RCROnwh56Bme1B8iQi7SipZchDyUOXnIVK875iLkIW0gD6mD/tAzRMhDIuQgS/bs2SPtk4mIJk2a5FTbzlCnTh3q0qWL1DYzS2OBLDl+/Lh07iVXrlzUvn17h9oqUaIEbd++nUqWLCn7/vTp09ShQwdKTU11Yg6UHDt2jHr37i27nmv62apVK1q4cKHTn5o1a0rtGAwGu+UXLFhg1TM2NlZyK168ONWpU8fmfJnGs5jmq2/fvk4vI19fX+rXr59sf3bkyBHVsrt375Y8vby8aNSoUXbrHzZsGPn4+Mi+c8bXYDBQjx49ZJ6HDh1SLYuxCp43VkGEcQpE7jtWwRIRchHyEPKQO+chxBBiCDGkBDEkBzEkBzFkH8SQHMSQHMSQfRyJIZBFMAA5iNTUVB41ahR7e3vLnpzh4+PDo0ePtvumTj2fXtu2bVtZXceOHXOpPhPmT6Uwf7qf5VtFLZ9cYY2ePXvKPJcsWaKLpxYSEhKkN9Sa2j937pxqWfM3DQUHB2t66nRqaqrs6dFGo5H/+usvp1w///xz2XJasWKFarlu3brJyu3Zs8dmvadPn5atT2tvrtJKp06dZO3v3r1b87RJSUk8ZMgQxVNnAgICeOrUqZrq0DOGKlSoIHnkzZuXMzIyXKqPmfnIkSOyJ7SbPC3fnMzs2BO1GzZsKJtvV99s5SiWb+3dsmWL7P+WT5l3dTszce7cOdnbtUz1DxgwQFbOkWVpj2+//ZaDgoIUbfbu3ZsfPnyoOk1mvAl63bp1svkqUqSI3Sd5d+zYUfIIDQ11+inlpjefmdouVaqU1bLVqlWTyvn6+mp6UtX9+/dlT9QyGo38yy+/OOX6zjvvyJb92rVr7U5jHvv+/v58584dp9p2lvfff9/u/r5UqVKyde8MKSkpUuyab89Fixbl69ev25zWkZhauHAhBwcHK6Zp3bo1nzp1ii9fvuzUp3Xr1rLlpGUaW5jeJGkwWH+qtTkDBw50KN/aY968eXb3kxUrVpQcc+XKZfUpzOakpaVxSEiIbNn/8ccfTjnOmTNH5rh8+XJmlse5v7+/y29AcJQBAwbIvKKjo1XLiZTXLXG3YyRmMY45RTl+Z8bbbC1jSO+32eJNtkpyyptsLfPxmDFjnGrHGf7991+pX2AwPHsjh7X5tDzvsWnTJl0coqOj2cvLSxFDixcvlpXTqz/0559/cpEiRRT1NWnSxO5TRvWMH9Nxk8mhbt26ds+31apVSypfoUIFq2+Hs8fBgwelZW7qV1mrq0ePHrJ5Xrhwod36Ld+mYTQauX///k65lixZUlbPqVOnrJZFHvK8t6ojD2lD6xvV0SfyvD6RCP0hZnH6RMhDntcfYkYu0oqWXIQ8lPl5iNm9chHykDaQh2zjyf0hZjHykAg5yJJ8+fJJy7VixYpOtesKpjfo2nM2f8t2w4YNnW4vNjZWNY569OhhczpH42nlypUcFhammK5nz5784MEDp9z1jCc/Pz9pGbRs2dJuecs3q9+6dcul9rdu3SrLc5MnT1YtV7hwYWn51axZU3P9lm+lunLlilOemzdvlnnOnTtXtRzGKnjeWAURxikwu+9YBUtEyEXIQ8hD7pyHEEOIIXsghhBDJhBDz0AMaQMxpAQx9AzEkDa0xhDIGvAmaJCj8Pb2pvHjx9P27dspIiJC9kToL774gurUqUOnT5/OEpf69esT0X9P7hg/frwu9Y4dO5a6d+8uezLIo0ePqEWLFnTmzBmH62vZsqVUDzPTu+++S5cuXdLF1R5vvfWW7M2kzz//PJUpU0a1bPXq1aV5fvz4MS1dutRu/cuWLaPHjx/LvrP3tlZrLFy4UPYmoEqVKqmWa968ORH9tzzfe+89Sk9Pt1pv+fLlpSeyMDN9/fXXTj/h+dChQ7R27VrJM2/evFS3bl3N0/v5+dGMGTPojz/+kJ4abjAYKCkpiYYPH04vvvhilr7l2PRmd6JnT1revHmzy3VWrVqVfv75Z9kTdZiZRo4cSUuWLHG63gYNGkj1ERF9+OGHLrtqZdOmTfT7779LbQcGBko+Jho3biz5MTONHTuWbt686XLbZcqUoZUrV0pPEDfV//3330tvKtObQYMG0aFDh6R9gqnNpUuXUpUqVWjr1q2Z0q4lrVu3lt44ZjAY6MaNGxQVFWXzDQqffvqp9Dbo+/fvU48ePWzuH9TYu3cvDRgwQPak1q5du1ot/8ILL0hxlJaWRlOnTrXbxtdffy09dd20XS1atMghTyKip0+f0pIlS2T7ztq1a9ud7urVq9LvVapU0fT2aD2xfFNdXFycoszdu3elMuXLl3eqHR8fH/r111+pcePGspx+/fp1at26tSJ/OUufPn3o6NGjVL9+fWmbISL6448/qEOHDnTz5k167rnnHP5YPmVfyzS2MD1R32Aw2C1rXt6E5ds0HMX0tGPT8lGLZdObXAwGA1WvXl3xlDA1vLy8ZMcwRM+OafRwvHPnDhHJ4zwlJYWmT5/uVP3OcOHCBVmcG41Gq8ceIuV1S9ztGIlIjGNOUY7fifA228x+my3eZKskp7zJtkuXLkT03zqdOHEirVu3zqm2HOHevXvUpUsX6S1MBoOB6tevb/VNu+b9NWamUaNG6fL01qioKJo8ebLsWI6ZqV+/fk7vu2zRrFkzOn78OHXt2lXWF9q+fTtVrlyZFi5cqHubanTt2lXabxARHThwgPr3729zmtGjR0vOZ86coU8++cThduPj46lHjx6UkZEh1dW2bVsyGtVPb7/44otE9N96+eCDD1TfnGLi6tWr9MEHHyiOKxYuXOjw+bYffvhBdm4tPDzc5vEq8pDnvVUdeUgbWt+ojj6R5/WJROgPEYnTJ0Ie8rz+EBFykVa05CLkoczPQ0TulYuQh7SBPGQbT+4PEYmRh0TIQZYkJCQQ0bPlVKJECafadQXT9T3T/FteyzNh/r0r14GLFy9OmzZtkt6ca9q2f/nlF6fOPVmjc+fOdPz4cWrevLnsnNyyZcuocuXKuuRUVzA/N6b2VnNLLK/xOvKmczUs39RuLceZX18vUqSI5vrDw8NlfxcsWNAxwf/HcluzNq4DYxU8b6yCCOMUiNx3rIIlIuQi5CF9QR7ShtY8hBhCDNkDMfQMxBBiyARiSBuIISWIoWcghrShNYZAFqHxZmkAhOPx48fct29f2ZMzDIZnT4SePn266jR6Phnj9OnTiqeDzJw506U6TSQlJfELL7ygeCJj/vz5pac9Wz4xxBrJyckcHh4uqyc8PJy3bt2qi6saT548kZa1uaO19cLM/P3338vKh4aG2nxS45UrV2RPZDZN5+vry6dPn3bI17LtQoUKWS378OFDzpUrl2y++vXrZ7N+8zfKGo1GHjlypEN+zMy3b9/mMmXKyLbfPn36OFyPiXv37klPMjePn+DgYF6wYIHV6fSMIdNTJM2f3KLlSZZamDZtmiJ+fHx8ZG+71RpDzPKnuJt+fvDBB7q42mLfvn3SU6hN7Xbr1k1RTi3Oq1atavdtYVr58ccfFbFmNBq5Xbt2fP/+fYeffKSFtLQ0Hj16NHt7e8va9fLy4qFDh3JSUpJUNjPeBM3MvHTpUkWMlC5dmnft2mV1mvHjx8u2vaZNm9p9gzTzs6fvT5s2jQMCAmRthoWF2Xy782+//SYr7+Pjw+vXr7da/o8//pDeAm0+X0ajkdesWWPX0xzTG8hN9Tz//POapjNvv127dg61qQeHDh2SraOJEycqyvj6+kr/79Chg0vtPXr0iCMjIxVx0qpVK6tvtXMmpjIyMnjChAkyd9M28cknn2h6C4Q5eseV+RtDWrVqZbe85Rvuk5OTXWr/4MGDsvU+bdo0RRln13uHDh1kro4uaxOW2+aECROYmfmvv/5SxLmWt667yt27d7latWoyJ1tvQxApr9vCHY6RmMU45hTl+J0Zb7PNyrfZ4k22Oe9Ntqa3nplvw+PGjeOnT5861aY9Dh8+zGXLllVsr+vWrbM6TXx8PAcEBMjK9+zZ0+mcbIlpH2LZL5kyZQoz65eDzFm8eDHnyZNHUXf79u1V+xd656ExY8Yo2u7UqZPNvomlw9ixYzW3d/DgQSn/mOcHW2+sevjwIefJk0e2XooWLar6FrNNmzZxsWLFZH4FCxaU/i5btqymfhsz8/79+xXb2+DBg21OgzzkeW9VRx7ShtY3qqNP5Hl9IhH6Q8zi9ImQhzyvP8SMXKQVLbkIeShr8xBz9uci5CH7IA9pxxP7Q8xi5CERcpAlprd92ssJmYXlW3FmzZqlWs70Zimj0cgvv/yyy+3u2rWL/f39FXG0aNEi1fKuxNPMmTM5MDBQ0dbgwYM5MTFRcz16xlPx4sUll8qVK9stP3HiRFnbcXFxLrUfHR0tq+/HH39ULRccHCwtt+bNm2uuv3nz5rL6Hz586JTnpk2bZNvnjBkzVMthrILnjVUQYZwCs/uOVbBEhFyEPIQ85M55CDGEGLIHYggxZAliCDGkBcSQdRBDiCEtaI0hkDXgJmiQ41mzZg0XKFBAkXRefPFFxSvt9R5E0KJFC0W7Q4cOtTkoVCv37t3j559/XtqZmtrw9/fnSZMmOZRkf/75Z9mO2fyk5urVqx1KrLa4du0aT5kyhYsWLSprx2g0cqVKlWxe2BJp8KoIg4G1kp0Dq0UbqK52Y/+LL77I+/fv18XXnOTkZP766685MDBQsd5PnDihOs2XX36pmN+QkBD++OOP+ciRIy47TZkyRXU/onYhXU/27t3LpUqVUrRRoUIFPnjwIDNn3k3QzMzdu3eXtW36vUOHDrxlyxbVC0PmNwcbjUYOCQnhESNG8N69e2Xb98OHD3nPnj38/vvvc7FixWTzZ/r5/fff2/RLT0/nUqVKydaLr68vjx49mm/evCmVu3r1Ko8cOZL9/Pxk81GrVi3p79y5c/P27ds1LZfp06crXCdNmqRp2rCwMMm3bt26mqbRE8tOldoyNh8I1KhRI5fbvHHjhpQbzZfZwIEDVcu7ElOHDx/mChUqKOqoXr26Q3lD77gqV66c5FO8eHG75WfOnClr/8KFCy61/9NPP8nqW7ZsmaKM6aETjp7kady4saxua4Oo7LF27VpZPbNnz5b+hxvQsv4GtOy++YzZ/Y85RTp+x4Bl3DhjNGLAsr22rQ1YPnjwoOIhOkajkUNDQ3nIkCG8efNmfvz4sUNtWxIXF8dLly7lqKgo9vLyki0/o1HbYLS33npLsQ3XqlWL//zzT5fcmJ8N4OrcubNqf6h169aZ1h+KjY2VjjPM6y9QoAD/9ttvsrJ656Hk5GSuUqWKYn7Dw8P566+/5oSEBMU0CQkJXLduXZlHvXr1eOPGjarng1JSUjg6Opq7desmrXfztoYNG2bXc9y4carrpUKFCty9e3fu0qWL1F8yr9/f35+3bNki+65YsWKqOcxEamoqT548mf39/RW50vL8oyXIQ7hxBnnIftv2HmqDPpHn9YncvT/ELE6fCHnI8/pDzMhFWnAkFyEPed7DoZCHrIM85Die1h9iFiMPiZKDzDHlBpOvXvt4rXz66aeyZbty5UrVcqVLl5Y8tVwT1ILpOp/lst+yZYuirKvxdPr0aa5Ro4ainnLlymkeG6JnPJnGpZly76VLl2yW37Vrl6b1pJW3335bVt/mzZtVy5UoUcLhbZqZuXDhwrLlfOjQIac8Z82aJfNcunSpajmMVfC8sQoijFNgdu+xCuaIkIuQh5CH3DkPIYYQQ4ghdRBDtkEMIYbsgRiyDWIIMWQPrTEEsgbcBA08glu3bnGbNm1kCcNgeHYDoPmTOvQeRHDs2DHVp4Pkzp2bO3TowBMmTOCffvrJ6fqvXr0qu7nNvA1Hk6zlTXnmv/v5+XGdOnX4f//7H0+ZMoWXLVvGMTExfPDgQT516hSfO3eOL1y4wGfPnuXjx4/z3r17eePGjbxo0SL+7LPPuGfPntJJQ/Plb36gpOUmTFEGr4oyGFgr2TmwWqSB6rdu3VK8bdn0e5UqVXjUqFG8ceNGvnHjhsOu6enpfP78eV62bBm/+eab0oUXS0dbF3vT0tKkbcwyDo1GI/v7+3O9evUcdjNnwoQJiuVpGe96bBeWPHnyhN98803FvPn6+vK4ceMUTzbVk6SkJG7WrJnV/WdoaCi3bNmSR4wYwbNmzeKVK1fyhg0buH379orlYvrkzZtXuvCvtt80fd59911NjsuXL1f18/Ly4oIFC8ou5Jk7FSxYkC9evCi9bdu0TEePHm31aUiHDx/mqKgoRV2hoaGab34xDRgz7b/v37+vdXXowoABA2TLOzo6WlGmQoUKkmPevHk5IyPD5XaPHDkie8qwqX21m8ddjamkpCQeMmSIYvsKCAjgqVOnaqpD7/29acCNqb49e/bYLH/69GnZdm3vgQD26NSpk6z93bt3K8qYXwANDg7WdJInNTVVWq+mum0df9ji888/lzmuWLFC+h9uQMueG9Cy8xiJWYxjTlGO35kxYJkZN84YjRiwbMLRActLly5VvLXIfFvy9vbmsmXLclRUFPfv35/HjBnDU6ZM4dmzZ/P333/P8+fP57lz5/LMmTN54sSJPGLECO7Tpw+/9NJLXKRIEcVxsfnvNWrU0HS8ePfuXVld5o758uXj5s2b85AhQzQtHzVSUlI4KipKdZ+Xmf2hjIwM/uqrr9jPz0/Rbp8+ffjRo0fMnDl5KDY2VjE4zlR/YGAgt2/fnr/88kveuHEjnzhxgu/cucM3b96U+kLmyypXrlzcoEED7tixI0dFRXFkZKTqsbHp90aNGmnaP6elpXGDBg1U+6lqf5t+jho1ipmZX3zxRcX/6taty1988YXUt/vhhx944MCBVvvpH330kabliTyEG2eQh/7DmYfaoE/keX0iEfpDzOL0iZCHPK8/xIxcZAtHcxHykOc9HAp5SAnykGt4Wn+I2f3zkCg5yBzLN5YvWbJE03R6kJCQIJ17M7V/7tw51bJt27aVeR47dkwXB7V9XkhIiGIskh7xlJqayqNGjZKuo5vq8/Hx4dGjR9t9s7me8WT5MPzevXvbLJ+eni696cmUp53l5s2bsuug/v7+qjmQmblVq1ayed66davd+rdt26ZYX5999plTrvXq1ZO1v3fvXtVyGKvgeWMVRBinwOzeYxXMESEXIQ8hD7lzHkIMIYYQQ+oghuyDGEIM2QIxZB/EEGLIFlpjCGQNuAkaeBRz5szhoKAgxUm7Dh068O3btzNlEMG3336rSIrmf1etWtWl+q9cucJly5a12oYj8zJ06FDVeiydnfmo1WMwGDgsLIwPHz6syU+kwasiDAZ2hOwaWC3aQPWjR4/Knr5pLX5y5crF5cqV40aNGnFUVBR369aNX331Ve7Vqxf36NGDO3fuzC1atOA6depwREQE+/r6qsaT+d99+/a163f9+nV+/vnnrcZ5gwYNnF6WJr755hvZDRDOLktnWLt2LRcoUEDRnqWH3qSkpCgeJKG2ntT2i9b2t7b2vwaDgQcNGuSQo9rgCWvtmH6anlTUr18/xf8CAgK4WbNmPHjwYP7www+5Z8+e0sU2tXVu7Wm1tlxN044ZM8aheXWFf//9VzpOMBieDbRRexKuZWd/06ZNurQfHR2tuIHIaDTy4sWLZeX0iqk///xT9W3tTZo04djYWJvT6r2/nzdvnsyjbt26djvztWrVkspXqFBB9c3rWjh48KC03A2GZzftq9XVo0cP2TwvXLjQbt2LFy9WLN/+/fs75VmyZElZPadOnZL9HzegZc8NaNl58xmz+x9zinT8jgHLuHHGVC8GLDs3YHnVqlUcEhJi85jT2nGxrY+1OgwGAzds2NDmwFhLduzYodivmddbu3ZtzXWpkZKSIm2ntvZxmcHRo0e5UqVKirYiIiI4JiYm0/LQlStXODIy0uZ+3tp6VVsHWtZ77dq1rV74UOPOnTuyB4LZ8jRtV6YBZIcOHVLN8ba2VfO/X3rpJc2DEJGHcOMM8pDrD7VBn8jz+kTu3h9iFqdPhDzkef0hZuQiNVzJRchDnvdwKOQh5CHR8xAzzs3lpId8MjMvWbJENm1oaChfvHhR07Su0r17d1nbFStWtFrWcoBtt27ddPMwXcszX2fh4eGyt3HrGU+7d+/mkiVLKuqsUaOG4jqeOXrG0+XLlxXb6Lx582xOM336dFn7v/76q8PtpqenS4OQTe23adPGavlJkybJllPVqlU5KSnJavnk5GSuXr26Yn2GhYVZfWC7NXbu3ClrO3fu3FavQ2OsgueNVRBhnAKz+49VMCFCLkIeQh5y5zyEGEIMIYaUIIa0gxhCDKmBGNIOYggxpIYjMQSyBtwEDTyOc+fOce3atRUJIzw8nMuVK6dbUjBn9uzZqjcFGgwGbtWqlcv137lzh+vXr6/YUTuTZFeuXCk9pdbc19zZmY9aPe3atXP4rbiiDF5lFmMwsKNkx8Bq0QaqX7hwQbHercWPre3AVsyZ/9/Ly4tHjhypedu8d+8et2nTRtVBr85AdHS07Mnhltt2ZnL79m3pSU+urktH2bJli7Tutax/rduBZYfK8iKTFjIyMnjIkCGat7v33ntPmvbmzZtcqFAhu/sxa9uoeV1a+Ouvv2TrzMfHh9euXevwPDvK3bt3uVq1ajL/xo0bq5adM2eOzLFmzZqckpKii8e0adMUy9DHx4d/+eUXqYye2/S9e/ekpxubr8fg4GBesGCB1en03t8/fPhQegO6qc5+/frZnGbdunWyZTVy5EiH2719+7b05H9TXX369FEt+/3338uWU2hoKF++fNlq3VeuXOECBQoo4sTX11d2YkQLlm0XKlRItRxuQMu+G9Cy6+YzZvc/5hTp+B0DlnHjjHn9GLD830+tDxO4dOmS4q0FtvYr9j7Wpg8NDeVp06Y5NbDowIEDXKhQIdX627dv73B9lmRkZPDw4cOt+mdGDjKRnJzMw4YNU7Tp5eXF+fLly7Q8lJKSwqNHj+agoCC7ucTWOtay7vv27ctPnjxx2PHp06c8bNgw9vX1tRo/BoOBe/Tooaj/+++/17QtW/6/WbNmDl88QR7CjTPIQ67lIWb0iZg9r0/k7v0hZnH6RMhDntcfYkYu0jsXIQ953sOhkIeQh0TPQ8w4N2cLkXIQ87NzQ+Hh4TK38PBwTW/HcZYnT57I9vumn9OnT7c6zenTpxXrZebMmbr4JCUl8QsvvKBYR/nz55ferqp3PD1+/Jj79u2r2LcHBARYXQ56x9Orr74qa9/Ly4u//vprq+VTU1O5cuXKUvnAwEDesmWL5vYePXoknQc2X5br16+3Os2lS5ekt1yZyr/88st8584dRdn4+Hhu3ry5bD2azusZjUaOiorSnF/i4+O5WLFisnY7depktTzGKnjeWAURxikwizFWgVmMXIQ8hDzkznkIMYQYQgwp60IMaQcxhBhSqwsxpB3EEGJIrS5HYghkDbgJGngkaWlpPGbMGNUnCuuZmMzZv3+/7Km0Wk+caSU1NZWHDRtm9Q2sjvD06VOeNm2a7KZw8+Xj6Me8Dj8/P+7WrZt0MOAMogxeZRZjMLCjZMfAatEGqqelpfE333wjvZXYVvxoWf/WpmnWrBkfPHjQqXneuHEjN23alL29vaX6hg4d6lRdaly5coVbtmwpm5/M2LdaY+7cudKFiszct6sRExPDPXv2lG4Ed2Y/ajldpUqVrD713BHWrl3L5cuXt7rdhYaG8ty5cxXT7du3j0NDQzXvm0zfffrpp055VqtWTVaXt7c3jxs3Tve33Js4fPgwly1bVrGtrFu3TrV8fHw8BwQEyMr27NlTGhjkKmpv7vby8uIpU6Yws/4daeZnTwE2f3iB6Wf79u359u3bivKZMdhlzJgxivY7depkcxCfpcfYsWM1t3fw4EHpwqKpTV9fXz558qRq+YcPH3KePHlk66Vo0aKqT+7ftGmT9FAZU/0FCxaU/i5btqzqclVj//79iu1t8ODBVsvjBrTsuwEtu24+Y3b/Y06Rjt8xYBk3zljOr611quV4SG2d59QByyb++ecffuuttzhv3rwuxY/5dF5eXly3bl2ePXu2y8fECQkJPGLECA4ODpZ5DRw40KV6zVmzZo2U+7MiB5nz119/cfHixRXbaGY7xMXF8ejRo7lo0aIu7zPNvb29vblDhw68f/9+lx1jY2N58uTJ3LJlS65UqRKXLFmS69aty++8847N+lesWKHaH1JzDggI4I8//tjpJ78iD+HGGeQh1/MQ+kSe1ydy9/4Qszh9IuQhz+sPMSMX6Z2LkIc87+FQyEPIQzkhDzHj3Jw1RMpBzMw///yzoh6j0citWrXi1atXc2JiosPrSI1r167xlClTpJvYzdusVKmS3fMiLVq0UGxrQ4cOdSgerXHv3j1+/vnnFcvX399f8eYgPbflNWvWSONDzOt/8cUXFW/z1jue4uLiODQ0VLHemzVrxkeOHFGd5ty5c5w/f37Jw9vbmz/66CO+e/eu1Xbu3bvHs2fPlg0ANrUVFRVl1/O1115TLJ+8efPyoEGD+LvvvuNZs2Zxv379OCQkRDEvM2bMkG1nrVq1sunK/GyMg+W1YKPRyHv37rU5HcYqeN5YBXcfp8AszlgFZjFyEfIQ8pA75yHEEGIIMfQMxJBzIIYQQyYQQ86BGEIMmXA2hkDmg5uggUdjuXOy3OFlBrt37+ahQ4dy5cqV2c/Pjz/55BNd69+zZw/XqVNHSgyuzsvhw4d54sSJ3KZNG46IiJAlHS2f4OBgaUDpqlWrpCcF64EIg1dNiDAY2FGyemC1iAPVk5OT+eeff+Z27dpx7ty5rcaJrXVs+alcuTJ/9NFHfOrUKV3mOT4+nletWsWff/65zafoOMvGjRu5SZMmuh5wa+X8+fO67g8dJS0tjffs2cPTp0/n119/nevXr89FihRhPz8/q+vXx8eHCxcuzA0aNOA333yTf/jhB/733391d/v777/5yy+/5MGDB3Pfvn35o48+4lWrVtm8cHfu3Dlu3LixzW3X9H2VKlV406ZNTvsdPHhQ9UEloaGhPGTIEN68eTM/fvzY6fqZn+2Xly5dylFRUezl5aWYp3bt2tmc/q233lLs82rVqsV//vmnS17MzwaJde7cWXVf1Lp160zb18bGxkrr2Lz+AgUK8G+//SYrmxmDXZKTk7lKlSqKeQ4PD7f6EICEhATZQ2aMRiPXq1ePN27cqJq7U1JSODo6mrt16yatd/O2hg0bZtNx3LhxquulQoUK3L17d+7SpQuXKlVK9j/TSZAtW7bIvitWrJjqRUkTqampPHnyZPb395dN5+vrqzixoQZuQMu+G9Cy6+YzZvc/5hTl+B0DlnHjjCPr21pZa+s9pw9YNic9PZ337t3LkydP5j59+nCdOnW4WLFiNo+HjUYj58mThytUqMBt27aVjlPj4+Od9rBGUlIS//bbb/zOO+/wyy+/zLNmzdK1/ocPH6rmuqzgwYMH3KNHD9X1mhUOf//9N0+YMIHbt2/Pzz33nOx4297Hy8uLS5cuzT179uR58+bxzZs3M91XC3fv3uVPP/2Un3/+eVXv559/nkeMGMFXr151uS3kIdw4gzykTx5Cn8jz+kTu3h9iFqNPhDzkef0hZuSizMhFyEOe93Ao5CHkIdHzEDPOzVlDtBw0aNAg1X2v0WhkPz8/rlOnDv/vf//jKVOm8LJlyzgmJoYPHjzIp06d4nPnzvGFCxf47NmzfPz4cd67dy9v3LiRFy1axJ999hn37NmTy5Urp5gX0++hoaFWB8iac+zYMfb391c45s6dmzt06MATJkzgn376yan5Z2a+evWqdL3Oso3MzAe3bt3iNm3aKPJPSEgIL1q0SCqXGddZ//rrL6s33Tdo0ICnT5/O+/btk40HOHnyJJcsWVJWPjAwkFu0aMGffPIJz5gxg6dMmcLDhg3j5s2bs6+vr+p6L1y4MMfGxtp1vHPnjtW3v9uK5S5dunBGRgaXLl1a5ponTx4eOXIk7969m+/cucOJiYl8/vx5/uWXX7hdu3bs4+OjWN9t27a164mxCp43VkGEcQrMYo1VcPdchDyEPOTOeYgZMYQYQgwhhhBDjoIYQgwhhlwDMaRvDIHMBTdBA4/nyZMn/L///U81WWc26enpLp8Ytcb27du5f//+XL58ec6VK5du9SYmJvKFCxd49+7dHB0dzStXruSffvqJFy9ezMuWLePVq1fzX3/9xUeOHNH81MDsICsHr1qSkwYDZ8fAalEHqqempvLff//NixYt4hEjRnCvXr24WbNmXKNGDa5UqRKXKVOGS5YsyeXKleMqVapww4YNuUOHDjxo0CCeOnUq//HHH3znzh0d5jB7iIuL4+XLl0tPh80q0tPTecWKFbxo0SLp4w48fvyYb9++zdeuXeMrV65wXFwcP3jwILu1NLFjxw4eOHAgV6tWjfPmzcs+Pj5coEABrlKlCg8cOJA3btzo8FPJ1Vi6dCl7eXlZ7bB4e3tz2bJlOSoqivv3789jxozhKVOm8OzZs/n777/n+fPn89y5c3nmzJk8ceJEHjFiBPfp04dfeuklLlKkiOo+y/R7jRo1+P79+zb97t69K6vH3C9fvnzcvHlzHjJkiNPzn5KSwlFRUarHJ5nZkc7IyOCvvvpKtUPbp08f6WEmmfXE/9jYWKsd1cDAQG7fvj1/+eWXvHHjRj5x4gTfuXOHb968ye3bt1dsI7ly5eIGDRpwx44dOSoqiiMjIxVvaDD/vVGjRnaf4J2WlsYNGjRQTGvtb9PPUaNGMTPziy++qPhf3bp1+YsvvuCVK1fyhg0b+IcffuCBAwdyWFiY6vr+6KOPHFqmuAEte25Ay+6bz5hz1jEnc/Ycv2PAMm6ccWZ9q617TxuwrIWEhAS+c+cOX79+XToevnfvXqa2mV0kJCTwsmXLeMCAAZqeXqonP//8s2IfllV5yJzk5GQ+f/4879mzh3///XdesWIFL126VDqXtGbNGt65cyefO3eOU1JSstzPUe7fv89Hjx7l3bt386lTp3R5orAayEO4cQZ5SJ+cgD6RZ/aJclp/iDnr+0TIQ57XH2JGLsqMXIQ85JkPh0Iech3kIc/rDzG7fx4SKQcNHTpUse3osUwt6zL/LiwsjA8fPqzZ8dtvv1V1NP1dtWpVl5bBlStXuGzZslbbyMxtec6cORwUFKSI3Q4dOvDt27cz7TrrH3/8wcHBwap5z/wTFhbGlSpV4tq1a3PlypVVY93Wujf/O3/+/A49wP/vv//m/PnzW92mLOsvUqSIlAtXrFih2dVy3g0GA0dERNh905MJjFXwvLEK7j5OgVm8sQrunouQh5CH3DkPMSOGEEOIIcRQVc3zqgZiCDGEGKqqeV7VQAwhhlyNIZB54CZoAP6f6OhorlChAkdEREgf4Blk1eBVa+SEwcDuMrBaT7JzoDoA4BmrVq3ikJAQ3TvTtjo9DRs21JwHduzYobhYZV5n7dq1XZr/lJQUqcOa1R3po0ePcqVKlRRtRUREcExMTKZ1pJmfnUCIjIy0eZLCVqfT2vZha73Xrl1b86CnO3fuSE91ttVJN9+mUlNTmZn50KFDVp+YpqXT/9JLL+nykAETuAEt83GnY6SccMxpIquP3zFgGTfOYMAyEJlr167xoEGDuE+fPtIHiAXyEG6cQR7KPNAnynzcpU+Uk/pDzFnbJ0Ie8sz+EDNyUVaAPJQ1uEMuQh5yHuQhz+wPMee8PJQdOWjlypVcrFgx1WtRWpeltRizrKddu3Z848YNhx1nz54tu9HUvM5WrVq5vAzu3LnD9evXl3mbfs/sbfncuXNcu3ZtRXvh4eFcrly5TIvpCxcucMOGDRXry9b6tLZe7a37ChUqODRY2XzZ1KhRQ7Ve8/ZLlSqlqL9fv36a5suyTNGiRfn48eMOeWKsgueNVXD3cQrM4o1VcPdchDyEPOTOeYgZMYQYQgwhhlwDMYQYQgy5BmIIMeRqDIHMATdBAwAA0AUMrAYAZAaXLl3iTp062e2wONOBNp8+NDSUp02bxunp6Q75HThwgAsVKqRad/v27V2e/4yMDB4+fLhV98zsSCcnJ/OwYcMUbXp5eXG+fPkyrSPN/Oyi6ujRozkoKEhzJ9nWSRJb675v37785MkTh/yePn3Kw4YNY19fX5sd/h49eijq/v777zVtx5b/b9asGT98+FDPxQyyCBwj5WwwYDnzcYfByswYsAwAcE+Qh7IGd8hFyENAZNAnyrkgD2U+7pCDTCAXAZFBLsqZIA9lDe6Si3JSHsrKHPT06VOeNm2abICs2jUzrR/zOvz8/Lhbt268e/dulxz3798v3dBn7tevXz9dlkFqaioPGzZMdWB0Zm/LaWlpPGbMGPbx8VG0m9kOa9askQ1cdmW9W67/8PBw/uqrrzg5Odklx59++onbtGnDgYGBMsfKlSvzV199xYmJiYpp0tPTefDgwZrmyVSmfv36fP36daccMVbB88YquPs4BWbxxiq4ey5CHkIecuc8xIwYQgwhhhBDroEYQgwhhlwDMYQYcjWGgP4YmJkJAAA8jCtXrii+K168eDaY2EYETxEcicTxBACoc+TIEZo9ezatXLmSHjx4IPufwWDQXI/5oa/RaKRatWpR7969qVevXpQrVy6n3B4/fkzjx4+nOXPmUEJCguTUv39/mj17tlN1WrJ27VoaMGAA3bp1S5pfZiaDwUDp6em6tGGNmJgYeuONN+jq1atkMBikZWj6PTMdbt68SbNnz6aFCxfS9evXpe8dWefmmNy9vLwoKiqKRo4cSbVr13ba78qVK7RixQr666+/6Nq1a5SYmEgFChSgWrVq0WuvvWa17l9//ZUGDhxI9+7dszkvzEz+/v40bNgw+uyzz8jLy8tpVwAAEJnr16/ThAkTKDExUfpu4cKF2WgEMpsdO3bQ5cuXpb979+6dfTI2gKe+wBO4M9euXaMJEybQ06dPpe+QiwAAAGQF6A8BAADIbpCLcgb//PMPbdq0iXbt2kUnT56kK1eukCNDBnPnzk0VKlSgWrVqUZMmTahZs2aUO3du3fz27NlDK1asoJiYGDp37hwNHz6cPv/8c93q37t3Lw0bNowOHDggfZcV11mJiPbv30+9evWif//9V3ZdMCuu9Z4/f57Wrl1Lmzdvpr///ltxnV0rhQsXphdffJE6dOhA7dq1Ix8fH1097969S4mJiRQWFkYBAQF2y2/dupU+//xz2r59u+p2bDAYqFatWvTBBx9Qly5dXPbDWAXPG6vg7uMUiMQcq+DOuQh5KHNAHtInD5lADCGGEEOugRhCDCGGXAMxhBhCDAF3ADdBAwA8EqPRKDsQMBgMlJaWlo1G6ojgKYIjkTieAADbZGRk0IEDB6SO9OnTp+nGjRt0+/ZtSklJUZ3GYDBQcHAwFS5cmEqVKkUVK1akWrVqUaNGjSgsLEw3t+TkZNq4cSPFxMTQqVOnqGPHjvT222/rVv+jR49owoQJiguYWdGRfvjwIQ0cOJCWL1+e5R1pEwcPHqTNmzfT/v376ciRI3Tt2jXKyMjQNK3RaKQSJUpQnTp16MUXX6SoqCgKDw/PZGPb3Lt3j2bNmkXLly+nM2fOKP5fvnx5ateuHQ0ePJiKFi3qUlv3798nIqK8efO6VI8alg8ZceUBIyJ4iuBoQgRXERwBANlD165dafXq1dLfWXGs4Qzw1Bd4AgDcgcTERNqzZw9dvXqV7ty5Q8nJyRQSEkKlSpWiatWqUeHChbNbkYjE8BTBkQieAAAAAADAM3n69CnFxcXRzZs36d69e5ScnEzJycmUnp5OPj4+5OfnRyEhIRQaGkqFCxem/PnzZ5lbRkYGPX36lIKCgnSve8eOHfTzzz/T9u3b6dq1a9I118wmMTGRhg0bRj/88EOW30RqzuXLl+nff/+ly5cvU3x8PN27d48SExMpJSWFMjIyyMfHhwICAig0NJTCw8OpZMmSVL58eSpSpEiWOTrCzZs3af/+/RQbG0uPHz+mvHnzUsGCBalevXqZci0YYxU8c6xCThunQJS1YxVs4a65CHko80Ae0hfEEGIIMeQaiCHEEGLINRBDiCHEEMgOcBM0AMAjMRqNsr+z+iBAKyJ4iuBIJI4nAMB5Hj9+rNqRDg4OzlFv0H38+DH9/vvvUkc6Ojo6y9petmwZvf3227InemXX/jQlJYWuXLmiqTMdERGh+9PD9OTBgwd05coVWUfalZtC79y5Q3PnzqXo6Gg6cuQIpaamEhGRn58fVaxYkdq1a0c9evSg0qVLu+xu/pARRx8wIoKnCI4iuYrgqBfJycl06NAhOnnyJN2/f598fX2pYMGCVKZMGapRo0aWuthCBE8RHIngqTddu3alVatWEZF7993gqS/wdJ07d+7Qli1b6MCBA3Tr1i26e/cuBQUFUVhYGJUrV44aNmxINWrUUJwjgae4niI4ZodnamoqrVmzhrZs2UJ+fn70zTff2J1m7dq1NH36dNq7d6/NY8fKlStT7969qW/fvpQnT54c7ymCIzxd8/zss8+k3xs0aEAvvfSS5mmzEhE8RXA0IYqrKJ6Zwd69e2n//v109epVevLkCYWFhVGhQoWoSZMmVLFixezWk4CnfojgSJR9no8fP6ajR4/S1atX6fr163Tnzh16+vQpJScnU1paGvn5+ZGfnx8FBARQgQIFqFChQlS0aFGqWLEiBQcHZ5oXPOEpgiNwL37//XcaMWKE7M3qly5dykYjoBcYq5D5uMtYhZw0ToFI/7EKwL1BHgLANRBDALgGYggA10AMAUBEDAAAHojBYGCj0chGo1H63R0RwVMER2ZxPAEAwN25du0aDxo0iPv06SN9gPswdepUDgkJkeU8y4/RaGRvb29+/fXX+ebNmy61Z6rP0dwqgqcIjiK5iuCoBzdu3OD+/ftzcHCwNK+Wn0KFCvG7777Lt27dyjIvET1FcIRn5tGlSxfZvsFdgae+eKrn48eP+e7du9LHGY4ePcodOnRgLy8vqzFu+hQpUoQnTJjA9+7dg2c2eYrgKJKnJd9++y3nz59fqrdGjRo2y587d46rV69u8zhV7bg1b968/PXXX+doTxEc4em6p/l5cx8fH545c6bT85iZiOApgqMJUVxF8bTFgwcP+NatW5yenm63bEZGBn/77bccERFhM2eWLFmS582bp6lOeGa9pwiOongePHiQP/jgA37++ec1HU9a+0RERHDv3r35l19+4YSEBF3c4OnZniI4AgBATgVjFQAAAAAAAAAAAM8FN0EDADwSUW6IFcFTBEdmcTwBAAAAZ0hJSeFevXpJec4871l+zP8fFhbG0dHRTrfr6I2mIniK4CiSqwiOajx+/Jh//PFH7tu3Lzdr1oxbtWrF7777Lm/dutXqNKtWrZJuMNVyc0Lu3Ll5xowZTs+jKJ4iOMJTf09X8dSbYTMLeOqL3p5dunSRcqGXl5fD03/yySfSoGstN8iZvMPDw3nVqlXwzAZPERxF8jTx9OlTbtmypaK9iIgIq9P8/vvv0oN67B2rWjtubdGiBT98+DBHeYrgCE/9PE3lzaft27cvJyYmap7HrEAETxEcTYjiKoqnJStXruR27dpxrly5pPgMCgri1q1b86ZNm1SniY+P5/r162vOm0ajkatWrcqXL1+Gpxt4iuAokueBAwf4pZdeUuQ3Vz6muoKDg/ndd9/l69evO+0HT8/1FMERAAAAAAAAAAAAAAAAcioGZubsfhs1AABkNUajkQwGAxERMTMZDAZKT0/PZislIniK4EgkjicAAADgDIMGDaLvvvuOiEjKd0TPcp45av8zGo302Wef0ccff+xwu6b8qjW3iuApgqNIriI4WvLNN9/Qp59+Sg8ePFD9f4MGDejHH3+kiIgI6bvVq1fTK6+8IrVjPj9qmObRYDBQ37596bvvviMvLy/NjqJ4iuAIT+c9P/vsM4f8HeGXX36h06dPSy5jx461O82YMWNUv4cnPPVGT08ioq5du9KqVauk+rTmrPT0dOrcuTNFR0fLYlcL5uUHDhxIM2fOtDstPPXzFMFRJE/TdM2aNaOYmBhZe8xMQUFBlJCQoJhm9+7d1KxZM0pKSlJMYw/Lc4x16tShLVu2UGBgoPCeIjjCU19P8/Pm5tOWLVuWli9fTlWrVrXbblYggqcIjiZEcRXF08S1a9fo1Vdfpd27dxOR9XMfb7zxBs2dO1fqaz169IheeOEFOnPmjDSP9jDVHRYWRhs3bqQaNWrAMxs8RXAUyZPoWd/pyy+/pPT0dJeOJa39z/T/oKAg+uyzz+jdd991yA+enuspgqMzJCUl0d27d+n+/fuUlJREqamplJGRQX5+fuTn50dBQUEUHh5OQUFBWeIDT3iK6AkAAAC4O+np6XTx4kW6f/8++fr6UsGCBSk8PFzz8WxWIIIjETz1RhRPIqK7d+/SkydPpL+LFy+ejTbqiOBIBE+9cWfPmzdv0oEDB+jWrVt09+5dCgoKorCwMCpXrhxFRka6RayL4EgET70RxRNYQePN0gAAkKMwmD1V1/S7OyKCpwiOzOJ4AgAAAI6yatUqWZ4z5bpSpUrxsGHDeObMmTx58mTu06cP58+fX7Ws0WjkIUOGONy2aVotuVUETxEcRXIVwdGc5ORk7tChg+ItHmpv9ShQoACfPn2amZlv3LjBwcHBqv5qH7V5/N///qd53kTwFMERnq57Wk6j98eam7UPPOEpoiez82+WHjBggNX4NRgM7OvrywULFuT8+fOzt7e3zVjv16+f3fbgqZ+nCI4ieTIzT5o0SbWOkJAQ7tatm6L8/fv3FcefBoOB/fz8uHfv3rxixQq+ePEiJyQkcGpqKt++fZv379/P06dP5xo1aiim0+oqgqcIjvDU19P8uFItXj/55BNOTk62O6+ZjQieIjiaEMVVFE9m5tOnT3OxYsVkjtaOIY1GI/fv31+atlu3blbzpp+fH4eHh7Ofn5/VnFmkSBGOi4uDZxZ7iuAokmd6ejr36tXLasyrfSxzXsWKFblWrVpcpkwZDgsLs1ne9He3bt04KSlJkyM8PdNTBEetPH36lFevXs1Dhgzh+vXrc3h4uGJ/YO0TGBjIlStX5u7du/NXX33Fhw8f1tUNnvAUxRMA4By7du3iESNGcPPmzblKlSpcpUoVbtmyJX/wwQe8Y8cOzsjI0KWdEiVKSJ+SJUvmOEd4eq6nsyxbtoybNm3KgYGBivyZJ08efuWVV/i3337LMh9RHeHpuZ7mdOnSRXL08vLKbh1VRHBkhqfeuJtncnIyf/3111y5cmWb/bjg4GDu3r077969G47whCdwCNwEDQDwSNQuPrkjIniK4MgsjicAAADgKBUrVpRym8HwbBDozJkzOT09XVE2OTmZ58yZozqo2mg08uDBgx1q27xde7lVBE8RHEVyFcHRnJ49e1odtGn5t8Fg4HLlynFiYiIPGTJE4Zw7d24ePHgwr1u3jo8dO8Znzpzhbdu28RdffCFbLub1z507N8d4iuAIT9c9zeMsuz+24hye8Mzuj7085MyNpr/++qtU3jxmS5UqxTNmzJAehmDOiRMneMaMGVyuXDnZtKbfZ82aBc8s8hTBUSTPhIQEDgkJkU0XFBTE06ZN48TERNVphg4dqthPNGrUiGNjYzXN57p167hgwYIK17179wrtKYIjPPX3VMuZltM///zzvHXrVk0OmYUIniI4iuYqimdCQoIij6kdi1q6//XXX7x9+3bF/8LDw3nSpEl87tw5WTtnz57lCRMmyM6dmOpu2rQpPLPQUwRHkTyZmUeMGCHzMf1eu3ZtHjlyJP/888+8adMmXr9+PS9evJjfe+89rlChgqx8qVKl+MyZM1Kdd+/e5S1btvDEiRO5cePG7OXlpTq/HTt21OQIT8/0FMHRHlu3buWuXbtyrly5bO4LtHzMpy9SpAiPGTOGr1+/Dk945nhPAIBz7N+/n+vVq6ca3+bfRURE8MKFC11uzzz/Go3azmeK4AhPz/U0cfnyZV68eDF/8cUXPGnSJF6zZg0nJCRYLX/+/HmuVauW3bxq+n+dOnX4wIEDrsyiEI7w9FxPPXD2wcFZiQiOzPDUGz0933vvPa5cuTJXrlyZq1Sp4vD0mzZt4iJFimju05livVmzZpqvg4ngCE/P9QRZA26CBsLx448/utUHnlnjqTfmCcqdD1BF8BTBkVkcTwAAAMARNm3aJLtg4uXlxdHR0Xani4+P56ioKNX8+OGHH2puX+vFGhE8RXAUyVUER3Os3bATGhrKderU4cqVK3NAQICi3tGjR3NYWJjsJFnr1q05Pj7ealsZGRk8d+5cDggIkLWVN29efvjwofCeIjjCUx9PSy9LR2v/0/pRO8Fsqy1rwBOe7uzJ7PiFydTUVC5durQi7keNGqX6oBE1ZsyYwf7+/jLPXLly8c2bN+GZBZ4iOIrk+d1338naDAgIsPlk5idPnki5zjRdmzZtODU1VZOjidjYWH7uuedk9bRr105oTxEc4am/p2XMjhw5UtEfM/3dqVMnvnDhgkM+eiGCpwiOormK4vn2228rvAICArhHjx48depU/uabb/itt97iPHnyyMo1bNiQO3XqJJvPtm3b8qNHj2y2d//+fW7evLli+di7GRye+nmK4CiS5/bt2xX9qMjISN63b5/N6ZiZ169fz8WLF5emzZcvH589e1a17LVr1/ijjz7ioKAgRZ/t888/t9sWPD3PUwRHWxw6dIibNm2qyJuunBcxr8NUT1BQEI8ePZpTUlLgCc8c5wkAcJ558+axr6+vLD7txWyjRo34ypUrTrdpeRyaExzh6bmezM/yZbNmzVTzXu7cuXnMmDGKHHfixAkuUKCA1fmzNq/+/v68dOlSh+dNBEd4eq6nnohwQ6wIjszw1Bs9PV2pa+rUqezt7e1Q3868bO7cuXnFihU5whGenusJsgbcBA2Ew5UTnpnxgWfWeOqN+Xy78wGqCJ4iODKL4wkAAAA4wvDhw2U5zpG35WZkZPAHH3ygmiMnT56sqQ6tF2tE8BTBUSRXERzNKVOmjGyaAgUK8IoVK2Q37Dx8+JDHjh3L3t7ekpePj4+snU6dOnFGRoYmxz179nBgYKBs+nHjxgnvKYIjPPXxnDFjhlTOMlaLFCnCERERTn+CgoJkJ5+1TGMNeMLTnT2ZHb9gs2bNGkWemzp1qt3pLImJiZFuNjXVY+uBI/DUz1MER5E8u3XrJvOcMGGCzfpXrVol8yxYsKDdG3qscfDgQSn/GgwG9vX15QcPHgjrKYIjPPX3VOs7rVy5koODg1XzqL+/Pw8bNszmwwkyAxE8RXAUzVUEz5s3byryVq1atVTfDhAfH8/NmjWTne8wDb4xGp89+EArqamp3LBhQ1ldtqaHp36eIjiK5MnMXLNmTVn5Ll26OHSz2p07d7hSpUpS3q1Zs6bNh4icP3+eK1asKNvHBAQE8MWLF+EJT+EcrTF16lSHbu5x5KNWj9Fo5Jo1azp8cxA84enOngAA5/nhhx9UY9xavJr/LywsjLdt2+ZUu+Y51NSHFNkRnp7rycw8ffp0Rb5Uy3v169eX3rz79OlTLlu2rM35sJU3jUYj//DDD5rnSwRHeHqup96IcEOsCI7M8NQbd7gJesGCBTb7ZLb2FeblvLy8eN68ecI7wtNzPUHWYGBmJgAEwmg0ksFgIHfYdA0GA6Wnp6v+D56OY8tTb0zzTUTEzFnatiOI4CmCI5E4ngAAAIAj1KtXj/bt20dEz46lLl++TMWKFXOojvHjx9OYMWMUeXLx4sXUs2dPm9OaH0vayq0ieIrgKJKrCI4mNm/eTC1atJDK582bl/bt20dlypRRLf/dd9/RoEGDZPUzM4WHh9O///5LQUFBmudx0aJF1LdvX6mO0qVL07lz54T1FMERnvp6nj59ml577TX6559/pFglIqpSpQotWbKEKlWqpLlNc7p27UqrVq0iIn3OFcATnu7s6Wh9b731Fs2fP1+apxYtWtCGDRucanvevHn0v//9T7a/iIuLg2cme4rgKJJn6dKl6dKlS8TM5OfnR3fu3LGZ80aPHk1ffPGFNF9ffvklDR8+3ClPIqJXX32Vli9fLtW3ceNGat68uZCeIjjCU39Pa32nS5cuUa9evWjPnj2yPpmpvoCAABo4cCANHz6cChQo4LSnVkTwFMFRNFcRPGfMmEHDhg2TPMuWLUsHDx6kXLlyqZZPSUmhF154QTpGNXnnzZuXLly4QHny5NHcdmxsLJUrV45SU1OJmSkgIIAePHhAPj4+8MxETxEcRfLcu3cv1a9fX2ozMjKS9u3bp1rWXpsVK1akp0+fEtGz84ojR460Wj4hIYHq1KlDZ8+elfYxgwcPphkzZqiWh6fneYrgaI3PPvuMPv30U1luJPovVxYvXpwqV65MpUuXpkKFClH+/Pkpd+7cFBgYSF5eXuTl5UWpqamUmppKCQkJ9ODBA7p16xbFxsbS2bNn6ejRo5ScnKxad8mSJWnHjh1UuHBheMJTaE8AgPMcPXqU6tatS8nJyYprvFWrVqWSJUtSUlISnTx5kmJjY4nov3g1lfX19aWlS5dSly5dHGpb6/VhERzh6bmeRP/150yYe5hjqq9ly5a0fv16mjp1Kg0fPlzhXbFiRWrevDlFRESQr68v3bx5k3bv3k07duyglJQU2fLw9fWlmJgYqlevnvCO8PQ8zx07dtidB2cZM2aMVL/BYKBt27bZve+iUaNGiu9EcCSCJ5FnejozDuKff/6hunXrUlpamvQdM5OXlxe1bduWmjdvTlWqVKHQ0FBKT0+nu3fv0rFjxygmJoaio6MpLS1NFuteXl60ZcsWaty4sbCO8PRcT5BFMACCYfkU4uz6GOw8SQKe+nrqjcHiKR1Z2bYjiOApgiOzOJ4AAACAIxQvXlzKbeXLl3e6ngkTJihypZ+fH2/fvt3mdKZp7OVWETxFcBTJVQRHE2+//bbsSX5aniBr/kYb08+JEyc6NG8mqlWrJqvH2ps9RPAUwRGe+numpqbyyJEj2cvLS9bP9/f31/z2dksy46m68ISnu3o6Wl/lypVlsbl3716X2reM9ePHj8Mzkz1FcBTJMyQkRIrtevXq2a23X79+svk6efKkS56//vqrrL5Zs2YJ6ymCIzz197TVd8rIyOBJkyZxUFCQ6pPPjUYjBwQEcL9+/fjYsWMu+dpDBE8RHEVzFcGzQ4cOsjY3btxod5qdO3cq5m306NFOtf/666/L2t+xYwc8M9lTBEeRPN99911ZOXvn/GzxwQcfSHWFhYXZfWPvyZMn2dvbW5rfvHnzcnp6OjzhKYyjGhs2bJDlRVMd1apV4++++46vX7/u9HyYSE1N5ZiYGH7zzTc5ICBAkYMbNmwIT3gK7QkAcI0WLVrIjikNBgN36dKFL126pCh7+PBhfuWVV1T3Dd7e3rxs2TKH2rbVhxTNEZ6e63n48GH28fFRtKv2Ma9zyZIlXKZMGdn3xYsXt9kXvHLlCr/66quK8yrlypWzefwpgiM8PdPTMmb1/ljOo62Pl5eXsI7w9FxPZ8ZBvPTSS4r82rhxY75w4YLdaWNjY7lTp06KWI+IiODk5GRhHeHpuZ4ga8BN0EBIlixZwsHBwarJOys/9nai8NTXU08sk1JWtu0IIniK4MgsjicAns4bb7zhNp++ffsK6yiSpyiu2e1lzTEoKEjKby1bttQQZdZ5//33FfkyX758fPbsWavTmJ8osJVbRfAUwVEkVxEcTdSqVUsqmytXLruD0JiZ16xZo2jj6NGjDs8bM/NXX30l6xOtWrVKWE8RHOGpv6eJnTt3cokSJRTtN2rUSHUAgS0y42ZYeMLTXT0drS9//vzSPISHh7vc/uTJk2Xt//zzz/DMZE8RHEXyNB9006FDB7v1vvbaa7J6ExMTXfI8ePCg7Fh1woQJwnqK4AhP/T219J1iY2M5KipKVp/5tSTT302aNOHFixfzkydPXHIX1VMER9FcRfAsXbq01F7BggU1T1e0aFHZvO3fv9+p9n/++WfZvC5ZsgSemewpgqNInnXq1JHKFStWzKm2TOzfv1/W5h9//GF3GtNgNtM0hw8fhic8hXG0JC0tjUuWLCnLnz4+Pjxz5kyX/G1x8eJFrlGjhiJnL1iwAJ7wFNITAOAaR44cUcTcxx9/bHe6mJgYjoiIkPXhTPuJ1atXa25fSx9SBEd4eq4nM/OLL74oK+/l5cWDBg3if/75h58+fcp3797lTZs2yW7sMRqNHBYWJvu7QoUKfPv2bU1+06ZNUzguXLhQaEd4eqanedns/liLdREc4em5no5eG96zZ49s3oxGI3fv3l3zg9xMmL8gxfTzm2++EdYRnp7rCbIG7+x+EzUAzvDaa69R1apVqXXr1nTjxg0yGAzEzGQwGGjx4sXUs2fP7FYkIni6O8yc3QqaEMFTBEcicTwB8GQWLVpEBoMhuzWkPDh//nzF/0RwJBLHk0gMV3d1zMjIkP7n6+vrUt1Tpkyh+Ph4WrJkCRkMBjIYDHT//n1q06YN7du3j0JDQ52uWwRPERxFchXB0cTFixeJiMhgMFBkZCT5+PjYnaZVq1bk7+9PycnJ0nclSpRwqv0aNWpI7RMR3b59W1hPERzhqb+niQYNGtCxY8fonXfeoR9//FE6t7Bz506qWrUqTZs2jfr16+eUi57AE57u7KmFhw8fEtGz2CxXrpzL9VWvXl2qj4goLi7O5TqJ4KmnpwiORNnnmStXLqntR48e2a23QIECsr/T09Nd0aSUlBTZ38HBwarlRPAUwZEInlrR6qmF4sWLU3R0NG3atIk+/PBDOn78uNQ3I/rvvPuOHTtox44d9Pbbb1Pnzp2pc+fO1KxZM/Lz83N+RnKYpwiOorlmt+fdu3eJ6Fm+qly5subpKlasSNevX5f+Llu2rFPtR0RESO0TEcXHx8Mzkz1FcBTJ8+LFi1KZ8uXLO9WWCdMxqKm+ffv2UYsWLWxO07FjR/rtt9+kv48dO0aRkZHwhKcQjpasXbuWLl26JJ3z8PLyolWrVlHbtm1d8rdFiRIlaOfOndSyZUvauXOn1PbXX39Nb7zxBjzhKZxn3759M83HUaxdsxbBkQiezpATPNevXy8r16xZM/riiy/s1vniiy/S33//TR07dqTdu3dLfbq0tDR69dVXaePGjdSkSRNd/EVwhKfneh4/fpy2bdsmy5e//PILderUSSrj7+9PzZs3p+bNm1O/fv1o4cKFZDAY6O7du9J0/v7+tG7dOsqfP7+mdocNG0bXrl2j6dOnS3V899131KdPHyEd4em5niYya3yf+fhzW21oGacugqO9OlwBnvqit6dW1q5dK/u7fPny9OOPP5LRaHSonpEjR1JcXBzNmjVLivW5c+fSO++84xGO8PRcT+AketxJDUB2cenSJS5WrJjsKVsBAQH8999/Z7eaDHi6H4sWLVJ83BERPEVwZBbHEwBPx+AGTz2z9/RNERxF8hTF1V0dixQpIh271a5dW0OU2SY1NZUbN26smN/69etzUlKSzeViaz2L4CmCo0iuIjiacPQNbSbM39JrNBo5OTnZ4fliZv7nn3+kOoxGI0+cOFFYTxEc4am/pxqrV6/m/PnzK2Kxbdu2fOvWLbvTZ+YbgeEJT3fzdLS+8PBwKS7bt2/vcvuWsf7FF1/AM5M9RXAUyTMyMlKK5bx583JaWprNen/88UfZfB05csQlz1mzZsnqW7VqlbCeIjjCU39PR/pOzMwZGRm8aNEiLlOmjCxGLc+ZmL7LlSsXd+rUiWfNmsWHDh2yuxysIYKnCI6iuYrg6evr61T+a9euncwnNTXV4baZ/3u7qMnhyy+/hGcme4rgKKpn69atnWrLRHJysqzNPn362J1m586dsmmmTp0KT3gK42hJr169ZPE7cuRIl7wd4caNG5wvXz5Z3r58+TI84Smcp+UxZHZ9bB3/iuAIT8/1bN68uSzWDxw4YLWsGklJSdy6dWvZ/BoMBg4JCeGjR4/anV5LH1IER3h6rufo0aNlbXz44Yc2601OTuaSJUsqYvSdd95xaP6YmRMTE7lw4cJSPd7e3nz37l0hHeHpuZ6dOnVSxGl2fazFugiO8PRcT0evDdeuXVsW4ytXrrQ7jTWePHkii3Wj0chXrlwR0hGenusJsgbHbmUHwM2IiIigzZs3S0+wNxgMlJSURD179pS99Si7gaf78frrrys+7ogIniI4EonjCYCnM378eAoMDJSenmn5yQrYzhPPRHAkEseTSAxXd3UsWLCg9L+jR4/S06dPXWrD29ubfvvtNypdujQR/fd0wL1791LPnj2drlcETxEcRXIVwdFEUFCQ9HtCQoLm6cLDw6W3sxMR3bhxw6n279+/L/s7d+7cquVE8BTBkQieWtHqqUbHjh3p+PHj1LJlS8mFmWn9+vVUqVIlWr16tVNOegNPfYFn1lC6dGnpuFCPN/ia3hBnIk+ePC7XSQRPE3p4iuBIlH2eNWvWlNp9+PAhrVixwma9LVq0IC8vLylPRkdHu+S5ePFi2d/W3pYogqcIjvDU39NRDAYDvf7663TmzBlasmQJVahQgZhZyqmmj+m7J0+e0Jo1a2jIkCFUq1YtCgkJoSZNmtDIkSNp/vz5tHnzZjp79iwlJibq4ieSpwiOorlmh2e+fPmk3x3pe8XFxcnOKd66dcupeb58+TIR/XfeMDQ0VLUcPLWhxVMERyJxPENCQqRyFy5ccKotE5bHoGlpaXanCQwMlP2dmpqqWg6enucpgqMlhw4dkuLX19eX3n//fQcsXaNQoUL0xhtvyK5jHThwQLUsPO0DT31xxNOE6XgxOz5aEcERnp7neeHCBSnWCxUqRLVq1XJo/vz8/GjNmjXUtm1bqU2DwUCPHj2iNm3aOH29SzRHeHqu544dO4joWax7eXnRhx9+aLO8r68vDR8+XBGjXbp0cbjtgIAA6tWrl1RXRkYG7d27V0hHeHqu56pVq2jBggWUK1cuYv5vvITBYKBWrVrRyZMn6dKlS059WrVqJbVjMBjslr948aKwjvD0XE9HuX79uvR7QEAAtW3b1um6AgMD6bXXXpPtNw4dOuSSH5EYjkTwNOFpnsBJGIAcwKpVq6QnK5h+Dh8+PLu1FMATAAAAsM+ZM2e4cuXKiqefGY1GbtiwITdp0iTLPiI7iuQpiqs7Og4aNEj2lLPvv//e7rLWwrlz5zg0NFQxnwMGDJCVszxmtIYIniI4iuQqgqOJ0qVLS2Xz58+v2eX999/nIkWKsJeXFxsMBv7111+dmqcJEybIltUvv/wirKcIjvDU39Me3377LQcFBSnitnfv3vzw4UPVabLqjcDwhKc7eDpa34gRI6TyoaGhnJGR4VL7n376qaZYh6d+niI4iuS5bt062bFfkSJF+Pbt2zbr7tixo8z1/v37Tjn+9NNPsrZLlSpltawIniI4wlN/T0f6TtbYsmULd+zYkb29vWVxa55fzT/m/zP/hIWFCe0pgqNoriJ4VqtWTarH19eX7927Z9fp/v377OPjI5s3Z/tb77zzjsx97dq18MxkTxEcRfKsVKmSrL3Tp0871R4z84IFC2RxPGzYMLvTrFy5UuY5d+5ceMJTGEdLcufOLTnXrl3baV9n2bhxo2w+Z8yYoVoOntqAp75o9fziiy84V65cVo8JLY8dM/Nj7fhXBEd4eq5nnjx5JKeXX37Zajl7JCcnc5MmTaT2TPNYtWpVTkhIsDqdqbwtTxEc4em5noUKFZLKVa9eXZPTvXv32MvLS1a/tbfk2mP9+vWyWJ83b56QjvD0XE8Tly5d4gYNGshi1Wg0ctmyZXnfvn1OOeh9fVgER3h6nqejdfn5+Unz8MILL7jUNjPzhg0bZMvm66+/FtIRnp7rCbIG3AQNcgzDhg2TdRZ9fHz41KlT2a2lAJ4AAACAfRISEvjll19WnAgeOnRodqtJiODILI4nsxiu7ub4yy+/yFwKFSrEcXFxutS9detW9vX1lV28MRqNPHjwYKmM1os1IniK4CiSqwiOJixPlP3xxx8O+aSmpvLFixf5xo0bDs9LWlqa7EZXo9HIFy5cENZTBEd46u+phTNnznDNmjUVsfncc89xTEyMonx23AwLT3hml6ej9f3zzz+y8tHR0U63nZKSwsWLF5fN97lz5+CZyZ4iOIrkmZaWxs8995zs2LB27do2B9McO3aMvb29pWlatmzJaWlpDjnu2bNHNojbaDTyRx99ZLW8CJ4iOMJTf09H+k72iIuL46lTp3KNGjWk/YH5oADzZaH2sdW+CJ4iOIrmKoLnwIEDZWVGjRpl12Xs2LGKtlu1auXwPCUmJkoDuU31WTv3Ak/9PEVwFMnz9ddfl7XZqVMnh9szUb16dVmbM2fOtDtNr169ZMtp8+bN8ISnMI6WmB5iYDQauV27dk77OsuhQ4dky2zixImq5eCpDXjqi1ZPZvd8KLaIjvD0TE/z67cdOnSwOT/2ePToEUdGRir6ha1ateL09HTVabT0IUVwhKfneprfsONIvqxQoYKs/tTUVIfni1mZL7/88kshHeHpuZ7mZGRk8IQJExRji3x8fPiTTz5x2CUzrmOL4AhPz/J0tK58+fLp2s87fPiwLNa/+OILIR3h6bmeIGvATdAgx5CamspVqlSRHTBnx4lTe8ATAAAA0EZSUhK/9NJLipPBP/74Y3arSYjgyCyOJ7MYru7kmJyczOHh4bKTYlWrVuXY2Fhd6v/xxx+lui2PC+/fv6/5Yo0IniI4iuQqgqOJmTNnyspXrFiRnz59qounPcaMGSNru0SJEkJ7iuAIT/09tZKWlsajR4+W3dhjMBjYy8uLhw4dyklJSVLZ7LoZFp7wzA5PU32mdps3b84jRozg5cuX89mzZ1WnqVevnjRNw4YNnW77vffek8V60aJF4ZkFniI4iuTJzLx06VJZeYPBwKVLl+Zdu3ZZnWb8+PGy+WvatKndt/QyPztvPm3aNA4ICJC1GRYWZvcNiyJ4iuAIT309Hek7OcK///7LX3/9NTdv3pz9/f2l+TefN7U+ncieIjiK5iqC52+//Sbz9PHx4fXr11tt+48//pDdBGTe7po1axyaj0GDBsnafv75562Whad+niI4iuS5YsUKRaxbezunLSZPnqyo599//7U5zcGDB2Vvvvb19eUnT57AE57COFoSFhYmxXDdunUddnWV6Oho2b7j+++/Vy0HT23AU1+0eppwt4diqyGCIzM89cbdPQsUKCDFeqNGjVyu78aNG1y0aFFF32zgwIGq5bX0IUVwhKfnegYFBUl1tmzZUrNPq1atZPU7+3D63bt3y86NTJ8+XUhHeHqupxqHDx/mChUqKOKwevXqfPLkSc31ZOZ1bBEc4ekZno7WVaVKFamsHvl1165dsljX403Q2eEIT8/1BFkDboIGOYpNmzYpDgb27NmT3VoK4AkAAABo4/Hjx1y+fHnZieOQkBC+du1adqtJiODILI4nsxiu7uT45ZdfyjrZJpePP/6Yjxw54nL9U6ZMUdRvNBq5SJEimi/WiOIpgqNIriI4MjPfu3dPumhjKv/iiy9yfHy8y462+OyzzxSetp5YK4KnCI7w1N/TUfbu3culSpVStFGhQgU+ePAgM2fvzbDwhGdWe5rfaGqe10yf3Llzc/369Xnw4ME8f/58Pnz4MG/dulVW9tNPP3WozYyMDB45cqSiXVtvh4Onfp4iOIrkaaJ79+6y6Uy/d+jQgbds2aL6Fg7zG3SMRiOHhITwiBEjeO/evbInrT98+JD37NnD77//PhcrVkzmZvppbwC1SJ4iOMJTP09H+6LO8PTpU966dSt//vnn3KpVKy5UqJC0LMw/ttoXwVMER9FcRfBMT0/nUqVKSfFqMDy7WW306NF88+ZNqdzVq1d55MiR7OfnJ6uzVq1a0t+5c+fm7du3a/KePn26YvlMmjTJanl46ucpgqNInk+fPuUiRYrIPL28vPjzzz/X1B4z87fffsteXl6yNmvXrm1zmm3btkkPcDRN07lzZ3jCUyhHS6pVqyZN5+/vz/fv39fsqgcDBgyQ7Ueio6PhCU/hPM1xp4diW0MER2Z46o07e5q/8TNv3ryckZHhcp1Hjhzh3Llzy3KytWNMLX1IERzh6bmexYsXl8qVKlVKs0v79u1leW7Tpk1OzdN3330nq2fJkiVCOsLTcz2tkZSUxEOGDJHFq8Fg4ICAAJ46daqmOjL7OrYIjvDM+Z6O1tW/f3+pfPHixV1qm/m/F0XYinURHOHpuZ4ga8BN0CDH0aJFC9lOplOnTtmtpAo8AQAAAG2cOHFCcQNQ27Zts1tLhgiOzOJ4Movh6i6OaWlpXLduXdmFE9PvRqOR/f39uV69ei61MWHCBFmdpja0XqwRxVMER5FcRXA0MXz4cMU0+fLl4zFjxvCJEydccjQnJSWFV6xYIRvwY/qZP39+TkhIEN5TBEd46u/pKE+ePOE333xTsX/w9fXlcePGcYcOHTL9ghI84ekunpZv27XMZ5b/MxqN7OvrqxhI/dFHH9ltKzExkX/66SeuXLmyItaDgoJsvmkUnvp5iuAokqeJpKQkbtasmeLY0PR7aGgot2zZkkeMGMGzZs3ilStX8oYNG6RBOJbljUYj582bl3PlyqW6DMy/e/fdd+36ieQpgiM89fN0tO+kF/Hx8bx9+3ZevHgxjx8/nj/44AOrb8sRxVMERxOiuIriuXz5ctUY9/Ly4oIFC8refGg+TwULFuSLFy+yt7e39J3pJtWHDx+qtnX48GGOiopS1BUaGsqPHz+2OV/w1M9TBEeRPOfNm6fqWbNmTV65ciU/ffpUdbp9+/aptmk0Gnnbtm2K8jdv3uTly5dzmzZtFNN4e3vz33//DU94CudozsCBA2XHhGPGjNE0nR78+++/sutl3t7eVh/kCE94urOnJe70UGxriODIDE+9cVfPnj17ymLd2ZvdLImOjpbOOZrnysWLF8vKaelDiuAIT8/1NJ1DNJXTei04OTmZz58/z1u2bOEFCxZID/V1lMaNG8vaV6tHBEd4eq6nPf7880/Vlyo0adKEY2NjbU6bVQ/zFsERnjnX09G61q9fr0tsmqhTp46sPrXzISI4wtNzPUHWgJugQY7j2LFjXK1aNelTo0aNLH+CpBbgCQAAAGjnxx9/VHTyN2zYkN1aMkRwZBbHk1kMV3dxvH79Oj///POSg8nH9GnQoIHLbXzzzTeyCzhqA3hygqcIjiK5iuDI/OzGBMvBAubOH3/8sUuO//zzD7dr147z5MmjqN9gePYWkfXr1+cITxEc4am/p7OsXbuWCxQooIhZy1jObuAJz8z0HDt2LBcsWFCWHy3bssyflk6mnxcuXFBtIzU1levUqcP+/v6qsW40GvmHH36AZxZ5iuAokqc5KSkpijfoquVPtXmwNj+25t9gMPCgQYM0+4nkKYIjPPXxtIw5d0UETxEcTYjiKoon83839tiLWfP5Wbp0KTMz9+vXT/G/gIAAbtasGQ8ePJg//PBD7tmzp/TmKrVcu2zZMnhmsacIjiJ5durUSdXTaHz2IMU6depw+/btuXv37tysWTMuWLCgar40Go08YMAA1TYiIyOtTqP1/Ao8Pc9TBEcTf/31lywGfXx8eO3atZqnd5a7d+9ytWrVZO6NGzeGJzyF9FTDXR6KbQsRHJnhqTfu6DlnzhxZrNesWZNTUlJ0qXvatGmKnOzj48O//PKLVEZLH1IER3h6ruenn34qq6tdu3a6OGph1apVMs/Q0FBhHeHpuZ5auHfvHnfr1k1Wp8Fg4ODgYF6wYIHV6bLyhlgRHOGZMz0t65o4cSJv3LiRb968qVo+IyODn3vuOan866+/7nTbixcvls17SEgIp6enC+kIT8/1BFkDboIGAAAAAABCYPkGnKpVq2a3kgIRHJnF8WQWw9VdHO/du8dt2rSRdfhNn27duunSRnR0NOfJk0dRvyMn0kTwFMFRJFcRHJmZY2NjOSIiQnGR0mg08qJFi1zy27p1qzT/lsvBYDDw5MmTNdclgqcIjvDU39NZbt++zW3btlVczHFmn5iZwFNf4Knkxo0bvGHDBp4wYQJ37dqVy5QpI2vTMsdZ5jsfHx9OS0uzWn9gYKDVWLc2EBuemespgqNInuZs2bKFIyMjVf0s856W+VCbr/DwcMUbPXKipwiO8HTN0x3zrxoieIrgaEIUV1E8mZ8NqhkyZIimmDUYDPzee+9J0968eZMLFSqk2B+oTaeWL83rgmfWeYrgKJJnYmIi16tXT1GHtXxorc3WrVtbHYTWunVr1Xr69evHGRkZ8ISnsI7mVKtWTVaHt7c3jxs3zupbq13l8OHDXLZsWVmbRqOR161bB094Cuuphrs8FNsWIjgyw1Nv3M0zPj6eAwICZD49e/bk1NRUXepXe8CPl5cXT5kyhZm19SFFcISn53qeP39ekbdGjBihi6MtYmJiODg4WNautQcsiuAIT8/1dITFixfLxhiZfrZv355v376tKJ/VN8SK4gjPnOVpqsu8XdOnUKFC3Lp1ax41ahSvXLlSegD2kiVLZO0787CrDRs2KB7uY+2mVREc4em5niBrwE3QAAAAAABACM6cOcM+Pj6yDoXWtwhkFSI4MovjySyGq7s5bty4kZs2bcre3t5SR37o0KG61X/lyhVu2bKl7CSBMyfSRPAUwVEkVxEc4+LipDrMpz9w4IDLbpYn4QwGA/v7+/P8+fMdrk8ETxEc4am/pyvMnTuXc+XKpXDJygtKWoCnvsDTNgkJCbxr1y6eOXMm9+vXj6tXr87+/v5SrjPPeRERETbrioiIUPV39Y3y8NTXUwRHkTxjYmK4Z8+e0mABSzctH8vpKlWqxF9//TUnJCS47CeSpwiO8HTO09W+aFYhgqcIjiZEcRXF05y1a9dy+fLlFTFq+oSGhvLcuXMV0+3bt49DQ0NV+2dq+wfTd59++ik8s9lTBEdRPJOTk/nNN9+0mhPtfT906FCbNzFYvtk6JCSEv/nmG3jCM0c4mjh48KB0vco8h4aGhvKQIUN48+bN/PjxY6fqNhEXF8dLly7lqKgo9vLyUsy/lrfCwROe7uxpDXd5KLYtRHBkhqfeuJvnW2+9pejL1apVi//880+X687IyODOnTvL4tr0u/lDRUw/RXaEp+d6duzYUVG+UaNGHBMT47KnJTdu3OB33nmHfX19ZW36+vry5cuXhXaEp+d6OkJsbCw3btxYMV8FChTg3377TVY2u26IFcERnjnH0/xGU/PzGtbOe4SEhHCjRo3Y29tbdk5D60N5rl69ygMHDmQfHx/FvJ44cUJYR3h6rifIGnATNAAAAAAAEIZBgwbJOi+1a9fObiUFIjgyi+PJLIarOzrGx8fzqlWr+PPPP+f169frXv/GjRu5SZMmLp9IE8FTBEcTIriK4Lh69Wpu2LChNL2rA28yMjLYz89PdlKsffv20tMHnUUETxEc4am/p7OcP3+e69SpozhZ7W7AU1/g6RhpaWl87Ngx/vHHH3nYsGHcpEkTzps3L7/00ks2p6tVq5bMvWbNmrx79254CuApgqO7e6alpfGePXt4+vTp/Prrr3P9+vW5SJEi7Ofnp7hIavr4+Phw4cKFuUGDBvzmm2/yDz/8wP/++6+uXiJ6iuAIT8ewvHjvrojgKYKjCVFcRfFU4++//+Yvv/ySBw8ezH379uWPPvqIV61aZfNNh+fOnZMGt1kbvGP6vkqVKrxp0yZ4upGnCI6ieP7555/SuQ+1Ni2/b9y4saZB16NGjWJvb2+OjIzkyZMnc3x8PDzhmeMcmZmXLl3KXl5eCi/T397e3ly2bFmOiori/v3785gxY3jKlCk8e/Zs/v7773n+/Pk8d+5cnjlzJk+cOJFHjBjBffr04ZdeeomLFCmiiH3z32vUqMH379+HJzyF91TD3R6KrYYIjszw1Bt387x7964sHs3jPF++fNy8eXMeMmSI0/WnpKRwVFSUIsbVforsCE/P9bx27RrnyZNHNZ8VKFCA58yZ47QjM/P169d52rRp3LJlS8W+w/Tziy++EN4Rnp7r6SgZGRn81VdfSWMmzNvr06cPP3r0iJmz94ZYERzhmTM8u3XrZvWch2X+tPV/b29vqw8sSEtL4xEjRnDDhg2lvqFlrL/zzjtCO8LTcz1B1mBgZiYAAAAAAAAEID4+niZMmCD7buzYsZQnT57sEVJBBEcicTyJxHAVwTGzuHnzJm3fvp2uXbtG77//fnbrWEUETxEcTYjgqodjXFwc7dmzhzp37uyyT8uWLSkoKIjq1KlDPXr0oGLFirlcpwkRPEVwJIKn3p7OkJGRQatWraLExETpu9dffz0bjdSBp77A03UePnxIISEhVv//xhtv0LVr16hGjRr0yiuvUGRkZBba/Qc89UMERyL393zy5AklJiZSSkoKZWRkkI+PDwUEBNh0zg5E8BTBkQielrzxxhuyvxcuXKhr/XohgqcIjiZEcRXFU2927txJy5Yto71791JsbCw9fvyY8ubNSwULFqT69etTu3btqEWLFmQwGOCZQzxFcMwOz9OnT9OWLVto9+7dFBcXR3fu3CEiotDQUCpUqBDVr1+fmjZtShUqVNBU3927dykwMJACAgJ08YOn53qK4Lh69Wrq27cvPXr0SIpJy+GBzsSqtTqYmRo0aEBr166lvHnzwhOeOcJTjbfffpvmzJkj/V2rVi3av3+/S3XqjQiORPDUG3fz3LlzJ7Vp04aePHlCRPL4NBgMVLNmTZf8UlNT6dVXX6VVq1Yp9iMGg4GYmQwGA6WnpwvtCE/P9dy8eTO1b9+ekpOTpe9M086aNYsGDhzotOPGjRupTZs2ko/JzdRGhw4daPXq1XbrEcERnp7r6QzHjh2jnj170smTJ2XxWrx4cVqwYAHNnj2bVq1aJXnZi2NPdYSn2J7MTGfPnqV//vmHjhw5In3i4+Nl5Wz110x+jx8/tnqew8/Pj9LS0lRjvVatWrRz507y9fUV1hGenusJsgbcBA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQALl++TO+//z799ttvRKQcCOrocEFr0+fLl49GjRpFQ4cOJaPRCE945ihPS0R4KLYIjkTw1Bt39Pz777+pffv2dPPmTUWMtm3bltasWeNS/cxMI0aMoClTpqjuA7TcBCSCIzw913Pr1q302muvUVxcnOymt5iYGGrcuLHTfufOnaPy5curuvXq1Yvmz59P3t7emuoSwRGenuvpDCkpKfTRRx/RjBkzZO0bjUYKCQmh+/fvE1H23hArgiMRPPUmuz1v3Lgh3Xxq+nnp0iWrD6IqUKAAxcXFWa2vSJEidPPmTdl3zEyNGzemtWvXUnBwcI50hKfnegJ9wU3QwOO5cuWK4rvixYtng4lt4AkAAAAAAAAAAAAAAAAAAAAAAAAAAADQwpEjR2j27Nm0cuVKevDggex/jrxt13x4odFopFq1alHv3r2pV69elCtXLnjCM0d7AgCc4/HjxzR+/HiaM2cOJSQkENGz2O7fvz/Nnj1blzbWrl1LAwYMoFu3bsne1Kb1JiARHOHpuZ7379+ncePG0cKFC+nx48dkMBgoLi6OChQo4LRXSkoKBQYGEjNL+bNgwYI0efJk6tmzp8P1ieAIT8/1dJaYmBh644036OrVq4o3Uzsax57sSARPvXEnz4SEBOltvKabT0+dOkUpKSn0wgsv0O7du61OGxkZSceOHSOiZ7kxMDCQRo0aRR988AH5+Ph4lCM8PdcTOA9uggYej9FolJ04NRgMlJaWlo1G6sATAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AgZGRl04MAB2rVrF508eZJOnz5NN27coNu3b1NKSorqNAaDgYKDg6lw4cJUqlQpqlixItWqVYsaNWpEYWFh8ISnx3kCAJwjOTmZNm7cSDExMXTq1Cnq2LEjvf3227rV/+jRI5owYYLihlZHbgISwRGenuv58OFDWr9+Pe3bt4+++eYbl72KFy9OiYmJVLt2bXr11Vepc+fOFBAQ4FKdIjjC03M9neHhw4c0cOBAWr58ueyeCHe6IVYERyJ46o07e6alpdHJkyfp8ePHVL9+favlmjdvTjt37qSqVavSK6+8Qj179nTpIQo5zRGenusJtIGboIHHYzQaZX9n9wGANeAJAAAAAAAAAAAAAAAAAAAAAAAAAAAA0IvHjx9TcnIyJScnU3p6Ovn4+JCfnx8FBweTl5dXdutJwFNf4AkAyGk8fvyYfv/9d9q+fTtdu3aNoqOjs1tJgQiORPDUG3fzvH//PuXNmzdbHewhgiMRPPXGHT2XLVtGb7/9Nj148ED6zt3uixDBkQieeiOKpxrx8fEUGhqquOfInRDBkQieeiOKp6eDm6CBx2P+5mJ3eAqKNeAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQuVy/fp0mTJhAiYmJ0ncLFy7MRiMlIjgSwVNvRPEEAAA9wU3QwOMR5aZdeAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAU8B7ugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuBW6CBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALgVuAkaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FbgJmgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAW+Gd3QIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQHffv2zW4FCYPBQPPnz1d8L4IjETydISd4AgAAAAAAAAAAmYmBmTm7JQDIToxGIxkMBiIiYmYyGAyUnp6ezVZK4AkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOiL+Zi37MTWeDsRHIng6Sg5xRMAAAAAAAAAAMhM8CZoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODRZOc7hbTe6CqCIxE8tZATPQEAAAAAAAAAgMwAN0EDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0rdv3+xWkDAYDDR//nzV/8HTceCpL7Y8x48fTxMnTqTExETV/2fFDaj22hDBkQiejpCTPEWIdREcieDpDPDUF8SQfsBTX0T3FMGRCJ7OAE99QQzpBzz1xZYnyBoMnJ2PBwPADTAajbK/DQYDpaenZzRz/pQAABrgSURBVJONdeAJAAAAAAAAAAAAAAAAAAAAAAAAAAAAMMdoNLrFWzqZ2eY4IXg6Bjz1xZ4nEdHZs2epa9eudOLECcnZNF39+vXJy8srq3Rp69atwjoSwdMZRPcUIdZFcCSCp6PAU18QQ/oBT33JCZ4iOBLB01HgqS+IIf2Ap75oOacAMh+8CRp4PAsXLsxuBU3AEwAAAAAAAAAAAAAAAAAAAAAAAAAAAKBGdr4LxZEBqfC0Dzz1RatnuXLlaM+ePdShQweKiYmRTVe9enX6+uuvM8lQOyI4EsFTb0TxJBIj1kVwJIKnFuCpL4gh/YCnvuQ0TxEcieCpBXjqC2JIP+CpL+5wEzZ4htF+EQByNq+//rri447AEwAAAAAAAAAAAAAAAAAAAAAAAAAAAGDO+PHjKTAwkAwGg+onK9AyGBWe2oGnvjgyWDpXrly0fv16evHFF6U3PTEzzZw5kxYvXpyJltoRwZEInnrj7p4ixLoIjkTwdAR46gtiSD/gqS85xVMERyJ4OgI89QUxpB/w1JfsvAEbyDEw1gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkZ8+epa5du9KJEyekQaCmm+Tq169PXl5eWeaydetWq/+Dp+PAU19seZrz5MkTqlmzJp07d46InvkGBwfTyZMnqUiRIpmpqBkRHIngqTfu7ClCrIvgSARPZ4CnviCG9AOe+iK6pwiORPB0BnjqC2JIP+CpL1rPKYBMggEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAsCQkJ/PLLL7PBYGCj0Sj9HDp0aHaryYCnvsAz8zhx4gQHBQXJfNu2bZvdWjJEcGSGp964s6cIsS6CIzM89Qae+iGCIzM89Qae+iGCIzM89Qae+iGCIzM89UYUT5C54E3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4CQnJ1Pr1q1p69atZDAYpDfjLFy4kHr37p3dehLw1Bd4Zh6LFy+mPn36yHx///13atWqVXarSYjgSARPvXFnTxFiXQRHInjqDTz1QwRHInjqDTz1QwRHInjqDTz1QwRHInjqjSieIPPATdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAO4MmTJ1SzZk06d+4cERExMwUHB9PJkyepSJEi2Wz3H/DUF3hmHh06dKB169ZJg6yrVKlCR44cyW4tGSI4EsFTb9zZU4RYF8GRCJ56A0/9EMGRCJ56A0/9EMGRCJ56A0/9EMGRCJ56I4onyByM2S0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1wkKCqKVK1dSQECA9F1CQgINHDgwG62UwFNf4Jl5TJo0iby9vaW/jx8/TsuXL89GIyUiOBLBU2/c2VOEWBfBkQieegNP/RDBkQieegNP/RDBkQieegNP/RDBkQieeiOKJ8gccBM0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQQ6hYsSLNnj2bmFl6Q+j69etp48aN2a0mA576As/MoVy5cvTWW28RMxPRszdNTZ8+PZut5IjgSARPvXF3TxFiXQRHInjqDTz1QwRHInjqDTz1QwRHInjqDTz1QwRHInjqjSieQH8MbOr9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEfQoUMHWrdunTQotEqVKnTkyJHs1lIAT32Bp/7Ex8fThAkTZN+NHTuW8uTJkz1CKojgSARPvRHBU4RYF8GRCJ56A0/9EMGRCJ56A0/9EMGRCJ56A0/9EMGRCJ56I4on0A/cBA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQwzp49S5UrV6b09HTpDTk//fQTde/ePbvVZMBTX+AJAHAnRIh1ERyJ4Kk38NQPERyJ4Kk38NQPERyJ4Kk38NQPERyJ4Kk3ongC/TBmtwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0pVy5cvTWW2+R6T0pzEzTp0/PZisl8NQXeAIA3AkRYl0ERyJ46g089UMERyJ46g089UMERyJ46g089UMERyJ46o0onkA/vLNbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPozbtw48vX1lX334MEDypMnT/YIWQGe+gJPAIA7IUKsi+BIBE+9gad+iOBIBE+9gad+iOBIBE+9gad+iOBIBE+9EcUT6IOBTbe8AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAbYMxuAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBzdBAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwK3AQNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCtwEzQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArfi/9u41Nuvy/AP41YOVg7XMALIhIGplHjAUykAEKVM5jIEaETeUDQLKIkEwMpywNyKHmqDJNuIJJ0WYgscMdI4RGW4CWxUBN9QOmAUE5Wgbzqf1/+IfiY9PKX1KWcvy+STPi/v63fd9Xc/Dy+bLTwgaAAAAAAAAgFpVWloaaWlpp/XJysqK7OzsaNWqVXTq1CnuuOOOmD59eqxataquv16dGzZsWMJvVVBQcEb7ffPfpqio6Iz2AwAAAAAAAIgQggYAAAAAAACgHjp69Gjs27cvPvvss/jggw/ipZdeiokTJ0Z+fn7k5eXF22+/XdcjAgAAAAAAAHAGCUEDAAAAAAAAcFZZs2ZN3HTTTTF9+vS6HgUAAAAAAACAMySzrgcAAAAAAAAA4H9fmzZtIj8/v9r7Dx06FGVlZVFSUhK7du1Kel5RURETJ06MZs2axciRI2tzVAAAAAAAAADqASFoAAAAAAAAAM64goKCKCoqqtHZkpKSePrpp2PmzJlx9OjRhGdjx46N3r17R+vWrWthSgAAAAAAAADqi/S6HgAAAAAAAAAAqtKuXbt4/PHHY/ny5ZGTk5Pw7MCBAzFlypQ6mqxuFBUVRUVFxYnPsmXL6nokAAAAAAAAgFonBA0AAAAAAADAWaFz587x/PPPJ9VffPHFOHDgQB1MBAAAAAAAAMCZIgQNAAAAAAAAwFlj4MCBkZ+fn1Dbt29fFBcX19FEAAAAAAAAAJwJQtAAAAAAAAAAnFX69euXVFu3bl0dTAIAAAAAAADAmZJZ1wMAAAAAAAAAQCpatmyZVCsvL0/5nqNHj8bf/va32Lx5c2zfvj2OHTsWF154YbRs2TK6desWjRo1qo1xY+fOnVFcXBybN2+OsrKyaNCgQTRt2jQuvPDC6NKlS+Tk5NRKn1QcPnw4Vq1aFf/4xz9iz549kZ2dHa1atYouXbpEixYt/uvzAAAAAAAAAHyTEDQAAAAAAAAAZ5Vdu3Yl1bKzs6t9ftWqVVFYWBiLFy+OvXv3VrqnQYMG0atXr5gwYUIUFBSkPOPRo0fj2WefjdmzZ8d777130n0ZGRnxve99LwYPHhwjR46M884775R3Dxs2LObMmXNi3bNnz1i2bFm15tq2bVtMnTo1XnjhhSgrK0t6npmZGf369YvJkydHhw4dqnUnAAAAAAAAwJmQXtcDAAAAAAAAAEAq1q5dm1Rr1arVKc+Vl5fHnXfeGZ07d45XXnnlpAHoiIhDhw7FW2+9Fb169YqBAwdWGrw+mZKSkmjfvn3ce++9VQagIyKOHz8eK1eujPvvvz8uv/zyeOutt6rdJ1XPPvts5ObmxhNPPFFpADoi4tixY7Fo0aLo0qVLzJgx44zNAgAAAAAAAHAq3gQNAAAAAAAAwFnj888/j9///vcJtfT09Lj++uurPLdly5b4wQ9+EP/85z9T7rlo0aK49tpr4w9/+EPk5uZWuXf9+vVx3XXXxe7du1Pu8/nnn8eAAQPi9ddfjwEDBqR8viqTJk2KadOmVXv/kSNH4uc//3lUVFTU6hwAAAAAAAAA1SUEDQAAAAAAAMBZ4fjx43HPPffEkSNHEur9+/ePCy644KTnysvLo6CgIP79738n1LOysmLw4MHRp0+faNu2bWRlZcXnn38eS5cujRdffDF27NhxYu+GDRvixhtvjDVr1sS3vvWtSvtUVFTEXXfdlRSA7tq1awwePDiuvvrquOCCCyItLS22b98eK1asiOeeey62bduW8B1HjBgRGzdujOzs7Gr/NlX57W9/W2kAun379jF8+PDIy8uL8847L7Zs2RJvvvlmvPjii3HgwIGIiHjwwQdrZQYAAAAAAACAVAlBAwAAAAAAAFDvffHFFzFmzJh44403EuoZGRnx8MMPV3l2xIgRSQHo7t27x7x586JNmzZJ+wcOHBiTJ0+O8ePHx6xZs07UN2/eHMOGDUt6E/VXli5dGsXFxQm1GTNmxAMPPFDp/n79+sWECRNiyJAhCd9r586dMXv27Ljvvvuq/F7VsXXr1hg3blxCLS0tLaZOnRoTJkyIjIyME/X8/Py49dZbY+LEifHjH/84iouLvQkaAAAAAAAAqDPpdT0AAAAAAAAAAHzdsWPHory8PD755JN47bXXYvTo0ZGbmxuvvPJK0t5HH3008vLyTnrXG2+8Ea+++mpCrU+fPrF06dJKA9BfOf/88+OZZ56JCRMmJNQXLlwYf/rTnyo9881w9I033njSAPRXsrOzY/78+UmzvPbaa1Weq67p06fHvn37EmqPPfZYPPTQQwkB6K+75JJLYsmSJdGpU6damQEAAAAAAACgJoSgAQAAAAAAADjj5syZE2lpadX6nHPOOdGkSZO44oor4rbbbosnnngiKciblpYWU6ZMOWXI+LHHHktYX3jhhbFgwYI455xzqjX39OnTIz8/P6E2Y8aMSvd++umnCeuOHTtWq0fjxo1j1KhRJ9YZGRmxY8eO034L8/79+6OoqCihVlBQEPfff/8pz55//vnx/PPPR1ZW1mnNAAAAAAAAAFBTQtAAAAAAAAAAnFWuueaaWLx4cUyaNKnKfZ988kksW7Ysofbggw9GTk5OtXulp6cnBa2XLFkSW7ZsSdr7zcDwihUrqt3nJz/5SSxevDjWr18fBw8ejI8++ijS0tKqfb4yixYtiv379yfUHnrooWqfv/LKK+POO+88rRkAAAAAAAAAakoIGgAAAAAAAIB6r2nTpjF06NB48803Y/Xq1XHTTTed8syf//znpNodd9yRcu9+/fpFRkZGQu2vf/1r0r7c3NyE9bvvvhtjx46NgwcPnrJHy5Yto3fv3nHZZZdV+y3Vp/L2228nrJs2bRo33HBDSncMHTq0VmYBAAAAAAAASFVmXQ8AAAAAAAAAwP++Nm3aRH5+flK9oqIiDh06FFu3bo0PP/wwKioqEp5ffPHF8bvf/S66deuWcs933303Yf3tb387vvOd76R8T05OTrRt2zY2bNhworZ8+fIYMmRIwr4hQ4bEo48+mlD79a9/HQsWLIjbb789+vfvHz179oyGDRumPENNFBcXJ6zz8/OTwtyncu2110ZmZmYcO3asNkcDAAAAAAAAOCUhaAAAAAAAAADOuIKCgigqKqpyz+bNm2PatGkxa9as+M9//hMREaWlpXHjjTdGYWFh3HfffSn1XLduXcL64MGDMWjQoJTu+EpZWVnC+tNPP03ac80118TgwYPjpZdeSqhv3749Zs6cGTNnzowGDRpEjx49ok+fPtG3b9+46qqrajRPdXw9tB0RcfXVV6d8R4MGDeLyyy+Pjz76qLbGAgAAAAAAAKgWIWgAAAAAAAAA6oXWrVvHU089Ff3794/bb789Dh8+HBH/H14eO3ZsfPzxx/Hkk09W+749e/YkrMvKyuLVV1+tlVm/efdXZs+eHVu2bImVK1dW+vzQoUOxZMmSWLJkSYwfPz7atGkTAwYMiEGDBkWPHj0iPT29VuYrKyuLAwcOJNSaNm1ao7suuugiIWgAAAAAAADgv652/noKAAAAAAAAALVkwIABMW/evEhLS0uoP/XUUzFp0qRq33OyoHJt+PLLLyutN2rUKN5555145JFHolGjRqe8Z9OmTTFz5swoKCiItm3bxsyZM+P48eOnPd/+/fuTatnZ2TW6q6bnAAAAAAAAAE6HEDQAAAAAAAAA9c6gQYPiF7/4RVJ92rRp8cwzz1TrjiNHjtT2WCd89Zbqypxzzjnxy1/+MrZt2xZPPfVUfP/734/MzMxT3rl58+YYM2ZMdO7cOXbt2nVa830zQH46GjRoUGt3AQAAAAAAAFSXEDQAAAAAAAAA9dLkyZOjS5cuSfVx48bFxx9/fMrzTZo0SVjffffdUVFRUSuf0tLSU/bPycmJUaNGxdtvvx27du2Kl156Ke6555649NJLqzy3evXq6NOnTxw6dOiUPU6mcePGSbXy8vIa3bV3794azwEAAAAAAABQU0LQAAAAAAAAANRLmZmZMXfu3GjYsGFC/eDBgzFkyJBTvun5ggsuSFhv2rSp1mesrpycnLj99tvj6aefjg0bNkRpaWk888wzMWDAgMjKykra/8EHH8STTz55Wv2+GYTesWNHje4qKyur8RwAAAAAAAAANSUEDQAAAAAAAEC9lZubG4888khSfc2aNTF16tQqz1588cVJZyoqKmpzvBpr06ZN3H333bFw4cL47LPPYsiQIUl75s+ff1o9Lr/88oT16tWra3TPunXrTmsOAAAAAAAAgJoQggYAAAAAAACgXhs3blx06tQpqV5YWBglJSUnPde9e/eE9Y4dO2LNmjU1muHpp5+OBQsWxN///vfYvn17pXuOHz8eGzZsiDfeeCOltzg3a9Ys5s6dG3l5eQn10w0fd+vWLWG9atWqOHDgQEp3bNy4MXbv3n1acwAAAAAAAADUhBA0AAAAAAAAAPVaRkZGzJo1KzIyMhLqR44ciVGjRp303PXXX59Ue+KJJ1Lu//7778fPfvaz+NGPfhRdu3aNFi1axOjRoxP2vPzyy9G4cePIzc2NAQMGxL333nvSsHRl0tPT46abbkqoHTx4MOVZv65v374J63379sUrr7yS0h3z5s07rRkAAAAAAAAAakoIGgAAAAAAAIB6Ly8vL8aMGZNUf+edd6KoqKjSM927d4/c3NyE2vPPPx8ffvhhSr0nTpyYVLvtttsS1u3bt4/Dhw8n1ObOnZtSn507dyasmzdvntL5b+rbt2+0aNEioTZlypRqh6v37NmT0hutAQAAAAAAAGqTEDQAAAAAAAAAZ4VHHnkkLrrooqT6+PHjY9euXUn19PT0eOCBBxJqR44ciUGDBlX7Lc2/+tWvYsmSJQm1Dh06RK9evRJq3/3ud+PKK69MqE2bNi22bt1arT7bt2+P119/PaHWo0ePap09mczMzKTvv379+hg9enRUVFRUefb48eNxzz33pPQ2awAAAAAAAIDaJAQNAAAAAAAAwFnhvPPOi9/85jdJ9d27d8f48eMrPTN8+PDo1KlTQm39+vXRtWvXWL58+Ul7HT9+PAoLC+P+++9PelZYWBhpaWlJ9bFjxyasv/zyy7jhhhti3bp1J+0TEbFt27b44Q9/GGVlZQn1UaNGVXmuOsaMGZP0NuzZs2fHXXfdFeXl5ZWe2bNnTwwePDheffXV0+4PAAAAAAAAUFOZdT0AAAAAAAAAAFTXLbfcEgMHDoyFCxcm1OfMmRPDhg2LgoKChHpWVla8/PLL0bFjx4SQcWlpaXTv3j169+4dt956a1xxxRWRk5MTu3fvjuLi4pgzZ06UlJQk9R83blz06dOn0tlGjBgRzz77bLz33nsnaiUlJZGXlxc333xz9O3bN9q1axfZ2dlx8ODBKC0tjWXLlsULL7wQe/fuTfqeN9xwQ4q/TrJzzz035s+fH9ddd10cOnToRP2FF16IpUuXxvDhw6OgoCCaNm0aO3bsiKVLl8bs2bMT3qzdpEmTpIA2AAAAAAAAwJmWVlFRUVHXQwAAAAAAAADwv6O0tDTatm2bUPvpT38aRUVFtXL/5s2b48orr4z9+/cn1Nu1axdr166Nc889N+nMqlWrYuDAgbFt27Ya9x06dGg899xzkZl58v9vfOPGjdGzZ8/YunVrjfvk5eXF0qVLo0mTJpU+HzZsWMyZM+fEumfPnrFs2bIq7/zjH/8Yt9xySxw+fDilWcaOHRsbNmyIN99880Rt9uzZMWzYsJTuAQAAAAAAAEhVel0PAAAAAAAAAACpaN26dTz88MNJ9ZKSkpg+fXqlZzp16hTFxcXRu3fvlPs1bNgwCgsLY86cOVUGoCMiLr300vjLX/4SXbt2TblPRMSdd94Zy5YtO2kAuqb69u0bK1asiMsuu6zaZ0aOHBkzZsyo1TkAAAAAAAAAqksIGgAAAAAAAICzztixY6NDhw5J9cLCwigpKan0TMuWLWPx4sXxzjvvxM033xzZ2dlV9mjevHk88MAD8fHHH8eDDz4YaWlp1ZrtkksuiRUrVsS8efOiV69ekZ5e9Z/mGzVqFHfccUesXLky5s2bF+eff361+qSqY8eOsW7dunj88cerDEN36NAhXn755Zg1a9YpQ98AAAAAAAAAZ0paRUVFRV0PAQAAAAAAAAD/bUePHo3i4uLYtGlT7Ny5M/bt2xfZ2dnRrFmzyMvLi3bt2lU7+FyVvXv3xtq1a+Nf//pXlJeXx/79+yMrKyuaN28e7dq1i06dOkVWVlYtfKPUrFu3Lt5///344osvIjMzM1q2bBnt27ePq6666r8+CwAAAAAAAMA3CUEDAAAAAAAAAAAAAAAAAAD1SnpdDwAAAAAAAAAAAAAAAAAAAPB1QtAAAAAAAAAAAAAAAAAAAEC9IgQNAAAAAAAAAAAAAAAAAADUK0LQAAAAAAAAAAAAAAAAAABAvSIEDQAAAAAAAAAAAAAAAAAA1CtC0AAAAAAAAAAAAAAAAAAAQL0iBA0AAAAAAAAAAAAAAAAAANQrQtAAAAAAAAAAAAAAAAAAAEC9IgQNAAAAAAAAAAAAAAAAAADUK0LQAAAAAAAAAAAAAAAAAABAvSIEDQAAAAAAAAAAAAAAAAAA1CtC0AAAAAAAAAAAAAAAAAAAQL0iBA0AAAAAAAAAAAAAAAAAANQrQtAAAAAAAAAAAAAAAAAAAEC9IgQNAAAAAAAAAAAAAAAAAADUK0LQAAAAAAAAAAAAAAAAAABAvSIEDQAAAAAAAAAAAAAAAAAA1Cv/B8ntsG4GD7JlAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# APO state only\n", "\n", "import numpy as np\n", "\n", "\n", "fig, axes = plt.subplots(2, 1, figsize=(40, 10), sharey=True, sharex=True)\n", "\n", "ana_apo_1.plot_kex_bar(\n", " ax=axes[0], resolution_indicator_pos=15, label=\"APO\", show_seq=False, color=\"k\"\n", ")\n", "\n", "ana_tri_1.plot_kex_bar(\n", " ax=axes[1], resolution_indicator_pos=15, label=\"TRI\", show_seq=False, color=\"red\"\n", ")\n", "\n", "from matplotlib.pyplot import step\n", "from matplotlib.ticker import FuncFormatter, MultipleLocator\n", "\n", "from pigeon_feather.analysis import get_index_offset\n", "\n", "pdb_file = \"./data/6XG5_TRI.pdb\"\n", "index_offset = get_index_offset(ana_apo_1, pdb_file)\n", "\n", "# # ax.xaxis.set_major_locator(plt.MultipleLocator(2))\n", "axes[0].set_xticks(axes[0].get_xticks()[::2])\n", "axes[0].set_xticklabels(axes[0].get_xticklabels(), fontdict={\"fontsize\": 24})\n", "\n", "\n", "def format_func(value, tick_number):\n", " return f\"{int(value - index_offset +1)}\"\n", "\n", "\n", "axes[0].xaxis.set_major_formatter(FuncFormatter(format_func))\n", "\n", "seq_pos = 17\n", "for ii in range(0, len(ana_apo_1.protein_sequence[:]), 2):\n", " axes[0].text(\n", " ii,\n", " seq_pos,\n", " ana_apo_1.protein_sequence[ii],\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=22,\n", " )\n", "\n", "\n", "for ax in axes:\n", " ax.set_ylabel(\"-log(k$_{ex}$)\")\n", " #ax.legend(loc=\"lower left\")\n", " ax.yaxis.set_major_locator(plt.MultipleLocator(5))\n", "\n", " ax.plot(\n", " [-3, len(ana_apo_1.protein_sequence) + 3],\n", " [5, 5],\n", " color=\"gray\",\n", " lw=1,\n", " linestyle=\"--\",\n", " alpha=0.5,\n", " )\n", " ax.plot(\n", " [-3, len(ana_apo_1.protein_sequence) + 3],\n", " [10, 10],\n", " color=\"gray\",\n", " lw=1,\n", " linestyle=\"--\",\n", " alpha=0.5,\n", " )\n", "\n", "\n", "plt.subplots_adjust(hspace=0.08)\n", "fig.savefig(f\"{results_path}/ecDHFR_kex_bar_APO_TRI_{today_date}.pdf\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "logP projection to a pdb structure" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "from pigeon_feather.analysis import BFactorPlot" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "bfactor_plot = BFactorPlot(\n", " ana_apo_1,\n", " pdb_file=\"./data/6XG5_TRI.pdb\",\n", " plot_deltaG=True,\n", " temperature=293.15,\n", " logP_threshold=10,\n", ")\n", "bfactor_plot.plot(f\"{results_path}/6XG5_APO_deltaG.pdb\")\n", "\n", "# bfactor_plot = BFactorPlot(\n", "# ana_apo_1,\n", "# pdb_file=\"./data/6XG5_APO_relaxed_best_solvated.pdb\",\n", "# plot_deltaG=True,\n", "# temperature=293.15,\n", "# )\n", "# bfactor_plot.plot(f\"{out_path}/6XG5_APO_deltaG.pdb\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "delta logP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "if there are mutiple states availble, one can map the difference to the pdb strutcure" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "bfactor_plot = BFactorPlot(\n", " ana_apo_1,\n", " ana_tri_1, \n", " pdb_file=\"./data/6XG5_TRI.pdb\",\n", " plot_deltaG=True,\n", " temperature=293.15,\n", " logP_threshold=10,\n", ")\n", "bfactor_plot.plot(f\"{results_path}/6XG5_deltaG_APO-TRI.pdb\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "export logPFs to a csv" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "import MDAnalysis\n", "from pigeon_feather.analysis import get_res_avg_logP, get_res_avg_logP_std\n", "\n", "pdb_file = \"./data/6XG5_TRI.pdb\"\n", "index_offset = get_index_offset(ana_apo_1, pdb_file)\n", "\n", "\n", "def logPF_to_deltaG(ana_obj, logPF):\n", " \"\"\"\n", " :param logPF: logP value\n", " :return: deltaG in kJ/mol, local unfolding energy\n", " \"\"\"\n", "\n", " return 8.3145 * ana_obj.temperature * np.log(10) * logPF / 1000\n", "\n", "\n", "def create_logP_df(ana_obj, index_offset):\n", " df_logPF = pd.DataFrame()\n", "\n", " for res_i, _ in enumerate(ana_obj.results_obj.protein_sequence):\n", " res_obj_i = ana_obj.results_obj.get_residue_by_resindex(res_i)\n", "\n", " avg_logP, std_logP = get_res_avg_logP(res_obj_i)\n", " #std_logP = get_res_avg_logP_std(res_obj_i)\n", "\n", " df_i = pd.DataFrame(\n", " {\n", " \"resid\": [res_obj_i.resid - index_offset],\n", " #\"resname\": [res_obj_i.resname],\n", " \"resname\": [MDAnalysis.lib.util.convert_aa_code(res_obj_i.resname)],\n", " 'avg_dG': [logPF_to_deltaG(ana_obj, avg_logP)],\n", " 'std_dG': [logPF_to_deltaG(ana_obj, std_logP)],\n", " \"avg_logP\": [avg_logP],\n", " \"std_logP\": [max(std_logP, 0.35)],\n", " \"is_nan\": [res_obj_i.is_nan()],\n", " }\n", " )\n", "\n", " if res_obj_i.is_nan():\n", " df_i[\"single resloved\"] = [np.nan]\n", " df_i[\"min_pep logPs\"] = [np.nan]\n", "\n", " else:\n", " df_i[\"single resloved\"] = [res_obj_i.mini_pep.if_single_residue()]\n", " df_i[\"min_pep logPs\"] = [res_obj_i.clustering_results_logP]\n", "\n", " df_logPF = pd.concat([df_logPF, df_i])\n", "\n", " df_logPF = df_logPF.reset_index(drop=True)\n", "\n", " return df_logPF\n", "\n", "\n", "df = create_logP_df(ana_apo_1, index_offset)\n", "df.to_csv(f\"{results_path}/logP_APO_{today_date}.csv\", index=False)\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "# fecth two df and merge\n", "df_apo = create_logP_df(ana_apo_1, index_offset)\n", "df_tri = create_logP_df(ana_tri_1, index_offset)\n", "\n", "df = pd.merge(df_apo, df_tri, on=\"resid\", suffixes=(\"_APO\", \"_TRI\"))\n", "\n", "df.to_csv(f\"{results_path}/logP_APO_TRI_{today_date}.csv\", index=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.8" } }, "nbformat": 4, "nbformat_minor": 4 }